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ARTICLE

A PKB-SPEG signaling nexus links insulin resistance
with diabetic cardiomyopathy by regulating calcium
homeostasis
Chao Quan1,7, Qian Du1,7, Min Li1, Ruizhen Wang1, Qian Ouyang2, Shu Su2, Sangsang Zhu1, Qiaoli Chen1,

Yang Sheng1, Liang Chen1, Hong Wang3, David G. Campbell 4, Carol MacKintosh5, Zhongzhou Yang1,

Kunfu Ouyang3, Hong Yu Wang2,8✉ & Shuai Chen 1,6,8✉

Diabetic cardiomyopathy is a progressive disease in diabetic patients, and myocardial insulin

resistance contributes to its pathogenesis through incompletely-defined mechanisms. Stri-

ated muscle preferentially expressed protein kinase (SPEG) has two kinase-domains and is a

critical cardiac regulator. Here we show that SPEG is phosphorylated on Ser2461/Ser2462/

Thr2463 by protein kinase B (PKB) in response to insulin. PKB-mediated phosphorylation of

SPEG activates its second kinase-domain, which in turn phosphorylates sarcoplasmic/

endoplasmic reticulum calcium-ATPase 2a (SERCA2a) and accelerates calcium re-uptake

into the SR. Cardiac-specific deletion of PKBα/β or a high fat diet inhibits insulin-induced

phosphorylation of SPEG and SERCA2a, prolongs SR re-uptake of calcium, and impairs car-

diac function. Mice bearing a Speg3A mutation to prevent its phosphorylation by PKB display

cardiac dysfunction. Importantly, the Speg3A mutation impairs SERCA2a phosphorylation and

calcium re-uptake into the SR. Collectively, these data demonstrate that insulin resistance

impairs this PKB-SPEG-SERCA2a signal axis, which contributes to the development of dia-

betic cardiomyopathy.
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Type 2 diabetes (T2D) has become prevalent world-wide in
the past few decades, and much of the high mortality rate
in patients is due to heart disease1. Diabetic cardiomyo-

pathy is a progressive disease, independent of coronary artery
disease and hypertension, which begins early after the onset of
diabetes and can eventually lead to heart failure in diabetic
patients2. Although diabetic cardiomyopathy has been well
recognized in recent years, the pathophysiological mechanisms of
this disease are incompletely understood.

Multiple factors including structural, functional and metabolic
changes in the cardiomyocytes may contribute to the development
of diabetic cardiomyopathy3,4. In particular, insulin resistance,
which is characteristic of type 2 diabetes, is involved in the
pathogenesis of diabetic cardiomyopathy even when it only occurs
locally in the heart5. Myocardial insulin resistance not only perturbs
metabolism in the cardiomyocytes6, but also causes mitochondrial
dysfunction and oxidative stress in these cells7. Moreover, myo-
cardial insulin resistance can impair calcium homeostasis through
undefined mechanisms, which also contributes to cardiomyocyte
dysfunction in diabetic cardiomyopathy4,8,9. Insulin signaling is
initiated through binding of insulin to its receptor, which conse-
quently activates the phosphatidylinositol 3-kinase (PI 3-
kinase)–protein kinase B (PKB, also known as Akt) pathway10.
However, it is not clear whether this insulin–PKB pathway directly
regulates calcium homeostasis in cardiomyocytes, or solely exerts its
effect indirectly via metabolic changes. Accumulative evidence show
that an excess risk for heart failure persists in type 2 diabetic
patients despite an optimal glycemic control11, heightening the need
to decipher the molecular mechanism regulating calcium home-
ostasis by the insulin–PKB pathway.

The striated muscle preferentially expressed protein kinase
(SPEG) is a member of the MLCK subgroup of CaMK Ser/Thr
protein kinase family, and plays a critical role in regulating cardiac
development and function12. It regulates the cardiomyocyte
cytoskeleton in the developing heart, and its deficiency causes
dilated cardiomyopathy during embryo development and results in
neonatal death in mice12. Importantly, homozygous and
compound-heterozygous SPEG mutations are also associated with
dilated cardiomyopathy in human patients13. SPEG has two serine/
threonine (Ser/Thr) kinase (SK) domains in its C-terminal part,
referred to as SK1 and SK214. A few possible substrates for SPEG
have been identified, including MTM312 and junctophilin-2
(JPH2)15 that regulate cytoskeleton and t-tubule function, respec-
tively. In a recent study, we identified sarcoplasmic/endoplasmic
reticulum calcium ATPase 2a (SERCA2a) as a substrate for
SPEG16. SERCA2a is an important ATPase for reuptake of calcium
into the sarcoplasmic reticulum (SR) in cardiomyocytes during
muscle relaxation17. We further found that the SK1 of SPEG was
responsible for JPH2 phosphorylation while the SK2 could phos-
phorylate Thr484 on SERCA2a. Phosphorylation of SERCA2a by
SPEG promotes oligomerization of the Ca2+ pump and increases
reuptake of calcium into the SR16. Despite the importance of
SPEG, it remains unknown how this protein, particularly the
activities of its two kinase domains are regulated in the heart.

In this study, we identify SPEG as a protein that is phos-
phorylated by PKB in response to insulin in the heart. Phos-
phorylation of SPEG by PKB activates its SK2, which in turn
phosphorylates SERCA2a. We utilize genetically-modified mouse
models and their derived cardiomyocytes to demonstrate that
impairment of this PKB−SPEG signaling nexus may contribute
to the development of diabetic cardiomyopathy.

Results
PKBα/β deletion impairs heart function and SR Ca2+ reuptake.
To investigate whether PKB regulates calcium homeostasis in

cardiomyocytes, we deleted PKBα and β in mouse heart by
mating a PKBαf/f;PKBβ−/− mouse with a Myh6-MerCreMer
(MCM) mouse18. Before tamoxifen induction, only PKBβ was
deleted in the heart of PKBαf/f;MCM;PKBβ−/− mice whereas
expression of PKBα and γ was normal (Supplementary Fig. 1a).
After treatment with tamoxifen, the level of PKBα protein was
also markedly decreased, while PKBγ was substantially increased,
in the heart of PKBαf/f;MCM;PKBβ−/− mice as compared to the
heart of PKBαf/f;PKBβ−/− controls (Fig. 1a). Furthermore, we
found that PKBα protein was decreased by ~80% in primary
cardiomyocytes from tamoxifen-treated PKBαf/f;MCM;PKBβ−/−

mice as compared to that in control cardiomyocytes from
PKBαf/f;PKBβ−/− mice (Supplementary Fig. 1b–c). Insulin-
induced phosphorylation of PKB substrates AS160 and GSK3
was blunted in the heart of PKBαf/f;MCM;PKBβ−/− mice (Sup-
plementary Fig. 1d). Both cardiomyocyte sizes and heart to body
weight ratio were unaltered in the tamoxifen-treated PKBαf/f;
MCM;PKBβ−/− mice as compared to PKBαf/f;PKBβ−/− controls
(Supplementary Fig. 1e–f). Cardiac function was comparable in
the PKBαf/f;MCM;PKBβ−/− and PKBαf/f;PKBβ−/− mice before
tamoxifen induction, but was significantly decreased in the
PKBαf/f;MCM;PKBβ−/− mice from 2 weeks after tamoxifen
treatment (Fig. 1b–c). Concurrently, the diameters and volumes
of left ventricle (LV) became enlarged with thinner anterior and
posterior walls in the PKBαf/f;MCM;PKBβ−/− mice under both
systolic and diastolic conditions (Fig. 1d–e, Supplementary
Fig. 1g–l), suggesting that deletion of PKBα/β in adult hearts
causes dilated cardiomyopathy. We confirmed that tamoxifen
induction did not alter cardiac function in the MCM;PKBβ−/−

mice as compared to PKBβ-/- controls (Supplementary Fig. 2).
Cardiac dilation of the tamoxifen-treated PKBαf/f;MCM;
PKBβ−/− heart was associated with up-regulation of cardiac
remodeling, cell apoptosis and fibrosis but normal expression of
myofilament components such as tropomyosin-3 and troponin I
(Supplementary Fig. 3a–e, Supplementary Fig. 4a–c). As a con-
sequence of cardiac dysfunction, the PKBαf/f;MCM;PKBβ−/−

mice started to die from 3 weeks on after tamoxifen induction
(Supplementary Fig. 3f).

We isolated primary cardiomyocytes from these two genotypes
of mice at 4 weeks after tamoxifen induction, and measured Ca2+

transients. The peaks of Ca2+ transients were unaltered in the
cardiomyocytes from PKBαf/f;MCM;PKBβ−/− mice (Fig. 1f).
Interestingly, the full duration at half maximum (FDHM) and
time constant Tau of Ca2+ transients were both significantly
increased in the cardiomyocytes from PKBαf/f;MCM;PKBβ−/−

mice as compared to those in the PKBαf/f;PKBβ-/- control cells
(Fig. 1f). Together, these data show that PKB regulates calcium
reuptake into SR of cardiomyocytes.

Identification of SPEG as a PKB target. To gain insights into
how PKB regulates calcium reuptake into SR of cardiomyocytes,
we used a generic antibody recognizing phospho-Akt substrates
(named the PAS antibody) to identify possible PKB substrates in
the heart as previously reported19. PAS-reactive signals were
increased on a number of proteins in the heart of mice upon
insulin stimulation (Fig. 2a). These phosphoproteins were
immunoprecipitated from heart lysates using the PAS antibody
and identified via mass-spectrometry (Fig. 2b, Supplementary
Data 1). Among the 78 proteins identified, a few are known PKB
substrates, including AS160, RalGAPα1, RalGAPα2, and TSC2,
and their abundance in the PAS immunoprecipitates was sub-
stantially higher upon insulin stimulation than in the basal state
in wild-type mouse heart (Fig. 2c). Among potential novel insulin
targets was the protein kinase SPEG that is a key regulator of
SERCA2a (Supplementary Data 1). We confirmed that the
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abundance of SPEG in the PAS immunoprecipitates was
increased in response to insulin stimulation in wild-type mouse
heart similarly to the above-mentioned known PKB substrates
(Fig. 2d). Furthermore, when a GFP-SPEG fusion protein was
expressed in cells, insulin stimulated its PAS-reactive phosphor-
ylation, which could be inhibited by pre-treatment with a PI 3-
kinase inhibitor, PI-103, or with a PKB inhibitor, Akti1/2
(Fig. 2e–f). Deficiency of PKBα/β caused insulin resistance in
mouse heart, and the abundance of their substrates including
AS160, RalGAPα1, RalGAPα2, and TSC2 in the PAS immuno-
precipitates was substantially lower for PKBα/β-deficient mouse
heart relative to wild-type mouse heart upon insulin stimulation
(Fig. 2c). Insulin resistance due to PKBα/β deficiency also
diminished the presence of SPEG in the PAS immunoprecipitates
(Fig. 2d). Taken together, these data show that SPEG is a target of
the insulin−PI 3-kinase−PKB signaling pathway in the heart, and
insulin resistance impaired its PAS-reactive phosphorylation in
the heart.

PKB phosphorylates SPEG on Ser2461/Ser2462/Thr2463 residues.
To elucidate biochemical aspects of regulation of SPEG by insu-
lin, GFP-SPEG was immunoprecipitated from cell lysates, and
phosphorylated residues that cluster in two regions on SPEG were
identified via mass-spectrometry (Supplementary Fig 5, Supple-
mentary Data 2). By fragmentation analysis, we identified PAS-
reactive signals within a region spanning Pro2227 to Ser2583

(Fig. 3a–c). Within this region, a small cluster of serine/threonine
residues namely Ser2461/Ser2462/Thr2463 conform to the PKB

consensus motif (RXRXXpS/T), and their mutation to non-
phosphorylatable alanine abolished insulin-stimulated PAS-
reactive signals (Fig. 3d–f). Furthermore, the purified SPEGP2227-

S2583 fragment could be phosphorylated by PKB in vitro, and the
triple-alanine substitution of Ser2461/Ser2462/Thr2463 prevented its
PAS-reactive phosphorylation by PKB (Fig. 3g). Together, these
data showed that SPEG is a PKB substrate that is phosphorylated
upon insulin stimulation, and PKB phosphorylates SPEG on the
cluster of serine/threonine residues including Ser2461/Ser2462/
Thr2463 that could be detected by the PAS antibody.

PAS-reactive phosphorylation of SPEG activates its SK2. The
cluster of serine/threonine residues Ser2461/Ser2462/Thr2463 are
located between the SK1 and SK2, and we next investigated
whether PAS-reactive phosphorylation regulates these two kinase
domains of SPEG. It has been reported that SPEG can regulate t-
tubule function probably through phosphorylating JPH215. In
agreement with this report, we also found that tamoxifen-induced
deletion of SPEG impaired t-tubule function in the heart as
indicated by decreased TT-power (Supplementary Fig. 6a–b). In a
recent study, we showed that SK1 but not SK2 of SPEG is
required for JPH2 phosphorylation16. Consistent with its pho-
phorylation by SK1, JPH2 was not phosphorylated by SPE-
GAsp1746Gly mutant protein, in which Asp1746 was mutated to
glycine to inactivate SK1. In contrast, mutant SPEG in which
Ser2461, Ser2462, and Thr2463 were replaced with non-
phosphorylatable alanine (SPEG3A mutant protein) phosphory-
lated JPH2 at a rate comparable to that of wild-type SPEG
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Fig. 1 Effects of PKBα/β deletion in the heart on cardiac function and calcium transients in primary cardiomyocytes. a PKBα, β and γ protein expression
in the heart of male PKBαf/f;MCM;PKBβ−/− mice at 8 weeks after tamoxifen induction. b–e Ejection fraction (EF) (b), fractional shortening (FS) (c), systolic
left ventricular volume (LV Vol;s) (d), and diastolic left ventricular volume (LV Vol;d) (e) were measured via echocardiography in the male PKBαf/f;
PKBβ−/− and PKBαf/f;MCM;PKBβ−/− mice before and after tamoxifen induction. n= 14 (0 week), 12 (2 week), 12 (4 week), and 12 (6 week) for PKBαf/f;
PKBβ−/− mice. n= 12 (0 week), 9 (2 week), 8 (4 week), and 7 (6 week) for PKBαf/f;MCM;PKBβ−/− mice. p= 0.147 (0 week), 1.60e-7 (2 week), 2.15e-8
(4 week) and 5.33e-10 (6 week) for EF. p= 0.165 (0 week), 8.56e-8 (2 week), 1.16e-8 (4 week), and 3.03e-10 (6 week) for FS. p= 0.229 (0 week), 1.05e-6
(2 week), 9.84e-7 (4 week), and 6.36e-8 (6 week) for LV Vol;s. p= 0.387 (0 week), 9.36e-5 (2 week), 2.70e-5 (4 week), and 1.23e-6 (6 week) for LV Vol;d.
f Calcium transients elicited by electrical stimulation in primary cardiomyocytes isolated from the male PKBαf/f;PKBβ−/− and PKBαf/f;MCM;PKBβ−/− mice
at 4 weeks after tamoxifen induction. Quantitation of amplitude, full duration at half maximum (FDHM) and time constant Tau of calcium transients was
shown. 76 cells from 3 PKBαf/f;PKBβ−/− mice and 34 cells from 2 PKBαf/f;MCM;PKBβ−/− mice were analyzed. p= 0.446 (amplitude), 5.96e-5 (FDHM),
and 3.99e-3 (tau). The data are given as the mean ± SEM. Statistical analyses for b–f were carried out using two-sided t-test. Two-asterisk indicates p < 0.01,
and three-asterisk indicates p < 0.001. Source data are provided as a Source Data file.
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(Supplementary Fig. 6c). These data suggest that PAS-reactive
phosphorylation of SPEG does not affect its SK1 activity.

The SK2, but not SK1, of SPEG can phosphorylate SERCA2a16.
In agreement with this report, SPEGAsp3098Ala mutant protein (in
which Asp3098 was mutated to alanine to inactivate SK2) was
unable to phosphorylate SERCA2a (Fig. 4a, b). Importantly, the
SPEG3A mutant protein also failed to phosphorylate SERCA2a
(Fig. 4a, b), suggesting that PAS-reactive phosphorylation of
SPEG is required for SK2 activation. Phosphorylation of
SERCA2a by SPEG increased oligomerization of SERCA2a16.
Therefore, we further investigated whether SPEG3A mutant
protein could increase oligomerization of SERCA2a. Three lines
of evidence showed that SPEG3A mutant protein was unable to
increase oligomerization of SERCA2a (Fig. 4c–h). First, unlike
wild-type SPEG, but similar to SPEGAsp3098Ala mutant protein,
co-expression of SERCA2a with SPEG3A mutant protein failed to
increase levels of high molecular weight SERCA2a (~ 300 kDa)

(Fig. 4c, d). Second, a FRET-based assay showed that wild-type
SPEG, but not SPEG3A and SPEGAsp3098Ala mutants could
increase the efficiency of FRET between CFP-SERCA2a and YFP-
SERCA2a (Fig. 4e, f). Third, co-expression of wild-type SPEG, but
not SPEG3A and SPEGAsp3098Ala mutant proteins, enhanced co-
immunoprecipitation of HA-SERCA2a with Flag-SERCA2a
(Fig. 4g–h). These results were in agreement with SPEG3A

mutant protein being unable to phosphorylate SERCA2a. More-
over, we found that the FDHM and Tau of Ca2+ transients were
significantly larger when SERCA2a was co-expressed in HEK293
cells with SPEG3A or SPEGAsp3098Ala mutant proteins compared
with SPEG wild-type protein (Fig. 4i, j), consistent with a critical
role for SPEG-stimulated phosphorylation and oligomerization of
SERCA2a in activation of this Ca2+ pump. In agreement,
overexpression of SPEG in primary neonatal rat cardiomyocytes
decreased the FDHM and Tau of Ca2+ transients and increased
their peaks, suggesting acceleration of SR calcium reuptake in
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these cells (Fig. 4k). Such effects were not observed when SPEG3A

mutant protein was expressed in neonatal rat cardiomyocytes
(Fig. 4k).

Taken together, these data suggest that PAS-phosphorylation
of SPEG activates SK2 but not SK1.

Insulin resistance impairs the SPEG–SERCA2a signaling
nexus. We next investigated how insulin resistance affects the
SPEG–SERCA2a signaling nexus. We first employed PKBα/β-
deficient cardiomyocytes as an insulin-resistant model. Insulin
expectedly stimulated phosphorylation of PKB and SPEG in WT
cardiomyocytes (Fig. 5a, b). Importantly, Thr484 phosphorylation
of SERCA2a was significantly increased in WT cardiomyocytes in
response to insulin (Fig. 5a, b). In contrast, insulin-stimulated
phosphorylation of both SPEG and SERCA2a was blunted in
PKBα/β-deficient cardiomyocytes (Fig. 5a, b). Furthermore,
SERCA2a-Thr484 phosphorylation was decreased in the heart of
ad libitum PKBαf/f;MCM;PKBβ−/− mice in which PAS-
phosphorylation of SPEG was also diminished (Supplementary
Fig. 4d, g). PLB phosphorylation was increased in these hearts

probably as a compensatory response (Supplementary Fig. 4a, b).
It has been reported that PKB mediates β-AR (β-adrenergic
receptor)-induced SR Ca2+ leak via CaMKII-dependent phos-
phorylation of RyR2 under hypertrophic conditions20. We found
that phosphorylation of RyR2 remained normal in the PKBα/β-
deficient hearts (Supplementary Fig. 4a, b), suggesting that PKB
might not be responsible for RyR2 phosphorylation under basal
conditions. We then used insulin-resistant rat H9C2 cardio-
myocytes induced with chronic insulin treatment as a second
model. Insulin resistance in this model also significantly impaired
insulin-stimulated phosphorylation of PKB, SPEG and SERCA2a
(Fig. 5c, d). Lastly, we utilized mice fed with a high fat diet (HFD)
as a third insulin-resistant model, in which decay of Ca2+ tran-
sients was prolonged and cardiac function was impaired (Fig. 6a,
c). As expected, insulin-stimulated PKB phosphorylation was
inhibited in cardiomyocytes from HFD-fed mice as compared to
that in cardiomyocytes from mice fed with a chow diet (CD)
(Fig. 6d, e). Importantly, insulin-stimulated phosphorylation of
SPEG and SERCA2a were lower in cardiomyocytes from HFD-
fed mice than in cardiomyocytes from CD-fed mice (Fig. 6d, e).
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Together, these data demonstrate that insulin resistance impairs
the insulin−PKB− SPEG− SERCA2a signaling axis in
cardiomyocytes.

Generation of transgenic mice bearing a Speg3A mutation. To
further delineate the in vivo function of PAS-reactive phos-
phorylation of SPEG, we generated a Speg3A-knockin mutant

mouse in which Ser2461, Ser2462, and Thr2463 of SPEG were
substituted with triple-alanine (Fig. 7a, Supplementary Fig. 7a, b).
The Speg3A-knockin mice had normal blood glucose and lipids,
and displayed similar tolerance to an oral glucose load as the
wild-type littermates (Fig. 7b, c). The SPEG3A mutant protein was
expressed at levels comparable to SPEG in hearts of wild-type
mice (Fig. 7d). Phosphorylation of TSC2, mTOR and AS160 were
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Fig. 4 Effects of PKB-mediated phosphorylation of SPEG on the activity of its second kinase-domain. a, b Flag-SERCA2a was co-expressed with GFP-
SPEG WT or mutant proteins in HEK293 cells. After immunoprecipitation, phosphorylation of Flag-SERCA2a was detected using the pSer/Thr antibody.
a representative blots. b Quantitation of SERCA2a phosphorylation. n= 8 (GFP and SPEG3A) and 7 (SPEG and SPEGD3098A). c, d Flag-SERCA2a was co-
expressed with GFP-SPEG WT or mutant proteins in HEK293 cells. Oligomerization of SERCA2a was determined via western blot and subsequently
quantified. Representative blots were shown in c and quantitative data shown in d. n= 6. E-F. CFP-SERCA2a and YFP-SERCA2a were co-expressed with
HA-SPEG WT or mutant proteins in HEK293 cells. Inter-molecular interaction of SERCA2a was measured via FRET. E, quantitative data on FRET efficiency.
f representative images for FRET. n= 28 (vector), 30 (SPEG), 35 (SPEGD3098A), and 29 (SPEG3A). Bars indicate 5 μm in length. g, h HA-SERCA2a was co-
expressed with Flag-SERCA2a in the presence of GFP-SPEG WT and mutant proteins in HEK293 cells. Flag-SERCA2a was immunoprecipitated, and the
abundance of HA-SERCA2a in the immunoprecipitates was detected via immunoblotting. g representative blots. h Quantitative data. n= 11 (GFP), 10
(SPEG), and 9 (SPEGD3098A and SPEG3A). i, j Calcium transients in HEK293 cells expressing mCherry-SERCA2a together with HA-SPEG WT or mutant
proteins. Calcium transients were recorded using a confocal microscopy in cells that were stimulated with ATP. Full duration at half maximum (FDHM, i),
and time constant Tau (j) of calcium transients were subsequently determined. n= 68 (SERCA2a WT+ SPEGWT), 43 (SERCA2a WT+ SPEGD3098A), 64
(SPEG+ SERCA2aT484A), and 20 (SERCA2a WT+ SPEG3A). k Calcium transients in neonatal rat cardiomyocytes expressing vector, mCherry-SPEG WT
or mCherry-SPEG3A mutant proteins upon field stimulation. Amplitudes, FDHM and Tau of calcium transients were quantified from 30 (vector), 12
(mCherry-SPEG WT) or 18 (mCherry-SPEG3A) cells. The data are given as the mean ± SEM. Statistical analyses were carried out using one-way ANOVA.
One-asterisk indicates p < 0.05, two-asterisk indicates p < 0.01, and three-asterisk indicates p < 0.001. Source data are provided as a Source Data file.
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unaltered in the heart of ad libitum Speg3A-knockin mice (Sup-
plementary Fig. 8a, b). Moreover, the Speg3A-knockin mice also
displayed normal phosphorylation of both PKB and of its sub-
strate AS160 in response to insulin in the heart (Fig. 7d). Insulin-
stimulated glucose uptake was comparable in Speg3A-knockin and
WT cardiomyocytes, and expression of key regulators for glucose
and lipid metabolism were unchanged in the heart of Speg3A-
knockin mice (Supplementary Fig. 8c, g). As expected, insulin
stimulation increased PAS-reactive phosphorylation of SPEG in
the wild-type heart. Importantly, PAS-reactive phosphorylation
of SPEG3A mutant protein was blunted in response to insulin
treatment in the knockin heart (Fig. 7d). These data demonstrate
the suitability of the Speg3A-knockin mice and their derived cells
for studying the specific in vivo and in vitro roles of PAS-reactive
phosphorylation of SPEG.

Impairment of SR Ca2+ reuptake in Speg3A cardiomyocytes.
We next investigated whether the Speg3A-knockin mutation
affected calcium reuptake into the SR in cardiomyocytes.
The knockin mice had normal sizes of cardiomyocytes (Supple-
mentary Fig. 9a). Expression of SERCA2a, phospholamban and
ryanodine receptor 2 (RyR2), and phosphorylation of phospho-
lamban and RyR2 were unaltered in their hearts (Fig. 8a, Sup-
plementary Fig. 9b, c). Unlike the WT cardiomyocytes where
insulin stimulated Thr484 phosphorylation of SERCA2a, the
knockin cardiomyocytes could no longer respond to insulin to
increase SERCA2a phosphorylation (Fig. 8a, b). Moreover, Thr484

phosphorylation of SERCA2a was also significantly lower in the
heart of ad libitum Speg3A-knockin mice than in the control heart
(Fig. 8c, d). SERCA2a oligomerization was also markedly

decreased in the heart of Speg3A-knockin mice (Fig. 8e, f). These
changes did not affect the ATPase activity of SERCA2a, but
caused a significant inhibition of its Ca2+ transport activity
(Fig. 8g, h), which is reminiscent of effects on SERCA2a imposed
by SPEG deficiency in the heart 16. In agreement with the inhi-
bition of Ca2+ transport activity of SERCA2a, the FDHM and
Tau of calcium transients elicited by electric stimulation were
both significantly increased in the cardiomyocytes from Speg3A-

knockin mice (2-month and 7-month of age) as compared to
those in control cardiomyocytes from wild-type littermates
(Fig. 8i, j, Supplementary Fig. 10a). The peaks of Ca2+ transiets
were normal in Speg3A-knockin cardiomyocytes from 2-month-
old mice, but became significantly lower in Speg3A-knockin car-
diomyocytes from 7-month-old mice than in WT control cells
(Supplementary Fig. 10a). The fequency of spontaneous calcium
sparks was normal in the Speg3A-knockin cardiomyocytes
(Fig. 8k). Again, the FDHM and Tau of calcium sparks were
significantly larger in the Speg3A-knockin cardiomyocytes than
those in wild-type control cardiomyocytes (Fig. 8k). In agreement
with SPEG3A mutant protein being able to phosphorylate JPH2
(Supplementary Fig. 6c), TT-power remained normal in the
Speg3A-knockin cardiomyocytes (Supplementary Fig. 10b, c),
suggesting that t-tubule function was most likely unaffected in the
Speg3A-knockin heart. Together, these data demonstrate that the
Speg3A-knockin mutation impaired calcium reuptake via SER-
CA2a into the SR.

The Speg3A-knockin mutation impaired heart function in mice.
We next performed echocardiography to investigate in vivo
effects of the Speg3A-knockin mutation on cardiac function.
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Interestingly, both ejection fraction and fractional shortening
were significantly lower in the hearts of young Speg3A knockin
mice (~2-month-old), and further decreased when they became
older (~5-month-old) (Fig. 9a, Supplementary Fig. 11). The
Speg3A-knockin hearts did not display symptoms of cardiac
hypertrophy; however, they progressed to become dilated with
enlarged left ventricle (LV) volumes and thinner LV walls
(Fig. 9a, Supplementary Fig. 11). The end-systolic LV volumes
were increased in the young Speg3A-knockin mice (~2-month-
old), and continued to expand when these animals became older
(~5-month-old) (Fig. 9a, Supplementary Fig. 11). The end-

diastolic LV volumes were unaltered in the young Speg3A-knockin
mice (~2-month-old); however, they also became significantly
enlarged when the knockin male animals got older (~5-month-
old) (Fig. 9a, Supplementary Fig. 11). The Speg3A-knockin
mutation caused no cardiac remodeling, cell apoptosis or fibrosis,
and did not alter expression of myofilament components
including tropomyosin-3 and troponin I, within the experimental
period (Supplementary Figs. 9 and 12). Together, these data
demonstrate that PAS-reactive phosphorylation of SPEG plays a
critical role in the heart at the downstream of insulin−PKB
pathway, and links insulin signaling with cardiac function.
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Discussion
In this study, we show that impaired calcium homeostasis due to
cardiac insulin resistance contributes to the development of dia-
betic cardiomyopathy. We identified SPEG as a PKB substrate in
the heart, and found that phosphorylation of SPEG by PKB
activated its SK2 but not SK1. We demonstrate that this PKB−
SPEG signaling nexus is critical for maintenance of cardiac
function through regulating SERCA2a-mediated calcium reup-
take into the SR in cardiomyocytes (Fig. 9b). Impairment of this
PKB− SPEG signaling nexus may contribute to the development
of diabetic cardiomyopathy.

Calcium handling through SERCA2a in cardiomyocytes is
impaired in type 2 diabetes, which may be one of the causes for
diabetic cardiomyopathy21,22. The reasons underlying the
impaired SERCA2a activity had not been clear. For instance, its
expression levels are either unaltered21 or slightly decreased in
diabetic hearts22. Similarly, both unchanged21 and increased22

expression of PLB have been observed in diabetic hearts. More-
over, these studies on SERCA2a were performed in the heart from
animals with overt diabetes, which displayed insulin resistance as
well as metabolic changes. It is therefore difficult to determine
whether insulin resistance, or metabolic changes, or both, impairs
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SERCA2a function in such diabetic models. We show here that
insulin resistance resulted from PKBα/β deletion or HFD feeding
decreases phosphorylation of Thr484 on SERCA2a. Moreover, our
data demonstrate that SPEG phosphorylation by PKB activates its
SK2 that in turn phosphorylates SERCA2a. The Speg3A-knockin
mutation prevents insulin-stimulated SPEG phosphorylation and
impairs SERCA2a function without causing systemic metabolic
changes. Our findings therefore establish a critical role of the
PKB-SPEG signaling nexus in regulating SERCA2a function,
which involves its Thr484 phosphorylation by SPEG. These
findings may not only help to explain SERCA2a dysfunction in
diabetic hearts but also demonstrate a critical role for SPEG in
diabetic cardiomyopathy. The risk of hospitalization for heart
failure remains high in type 2 diabetic patients who have optimal
glycemic control via anti-diabetic drugs11. In view of our study
here, we suspect that current therapeutic strategies for glycemic
control in T2D might not resolve cardiac insulin resistance that
may persistently impair calcium homeostasis in cardiomyocytes.

SPEG has recently emerged as a critical regulator for cardiac
development and function12,14–16. Despite its importance, it
remained elusive till now how this protein particularly its kinase
activity is regulated in the heart. In part, this was probably due to
technical challenges since SPEG is a large protein (~300 kDa)
with two kinase domains (SK1 and SK2) in its C-terminal
region14. Towards understanding its function and regulation, we
recently found that the SK1 and SK2 of SPEG may have divergent
functions. The SK2 of SPEG can phosphorylate SERCA2a
while the SK1 is responsible for phosphorylation of JPH216.
Here we show that insulin-stimulated PAS-reactive phosphor-
ylation of SPEG is required for the SK2 activity while it is not a
prerequisite for the SK1 activity. This selective activation of SK2
by insulin–PKB signaling might enable these two kinase domains
to fulfil their distinct roles in the heart. Besides insulin, other
stimuli such as insulin-like growth factor-1 (IGF-1) and angio-
tensin II (AngII) can activate PKB, which have pro-hypertrophic
functions in the heart23,24. It is therefore possible that such as

Fig. 8 Calcium homeostasis in Speg3A-knockin cardiomyocytes. a, b Phosphorylation of PKB, SPEG, and SERCA2a in WT or Speg3A primary
cardiomyocytes stimulated with or without insulin. Phosphorylation of PKB, SPEG and SERCA2a was normalized with their respective total proteins, and
quantitative data were shown in b. n= 6. One-dagger (WT insulin vs Speg3A insulin) indicates p < 0.001. c, d Thr484 phosphorylation of SERCA2a in the
heart of Speg3A mice and WT littermates (7-month-old). c representative blots. d quantitation of SERCA2a-Thr484 phosphorylation. n= 10 (WT) and 8
(Speg3A). p= 2.81e-3. e, f. Oligomerization of SERCA2a in the heart of Speg3A mice and WT littermates (7-month-old). e representative blots. f quantitation
data. n= 12. p= 1.97e-2. G-H. SERCA2a Ca2+-transporting activity (n= 15 (WT) and 14 (Speg3A), g) and ATPase activity (n= 4, h) in microsomes isolated
from the heart of WT and Speg3A-knockin mice. p= 1.98e-6 (SR calcium uptake) and 0.198 (ATPase activity). i, j Calcium transients elicited by electrical
stimulation in primary cardiomyocytes isolated from the WT and Speg3A-knockin mice (3-month-old). i Representative calcium transient images and curves.
j Quantitation of amplitudes, full duration at half maximum (FDHM) and time constant Tau of calcium transients. 75 cells from 7 WT mice and 68 cells from
7 Speg3A-knockin mice were analyzed. p= 0.603 (amplitude), 1.14e-6 (FDHM), and 8.68e-7 (Tau). k Spontaneous calcium sparks in primary
cardiomyocytes isolated from the WT and Speg3A-knockin mice (2-month-old). Frequency, amplitudes, full-width at half maximum (FWHM), full duration at
half maximum (FDHM) and time constant Tau of calcium sparks. 168 sparks from 35 cells of four WT mice and 194 sparks from 41 cells of four Speg3A-
knockin mice were analyzed. p= 0.839 (frequency), 0.800 (amplitude), 0.171 (FWHM), 3.27e-4 (FDHM), and 5.71e-4 (Tau). The data are given as the
mean ± SEM. Statistical analyses were carried out using two-way ANOVA for b, and two-sided t-test for d, f–h, and j, k. One-asterisk indicates p < 0.05, two-
asterisk indicates p < 0.01, and three-asterisk indicates p < 0.001. Source data are provided as a Source Data file.
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Fig. 9 Cardiac function of the Speg3A-knockin mice. a Echocardiography was performed on the anaesthetized male Speg3A-knockin mice and wild-type
littermates at age of 2 and 5 months to measure EF, FS, LV Vol;s, LV Vol;d, LVAW;s, LVAW;d, LVPW;s, and LVPW;d. n= 15 (WT, 2M), 17 (WT, 5M), 9
(Speg3A, 2M), and 12 (Speg3A, 5M). The data are given as the mean ± SEM. Statistical analyses were carried out using two-way ANOVA. One-asterisk
(WT vs Speg3A) and one-dagger (Speg3A 2M vs Speg3A 5M) indicate p < 0.05. Two-asterisk (WT vs Speg3A), two-dagger (Speg3A 2M vs Speg3A 5M),
and two-diesis (WT 2M vs WT 5M) indicate p < 0.01. Three-asterisk (WT vs Speg3A), three-dagger (Speg3A 2M vs Speg3A 5M), and three-diesis (WT 2
M vs WT 5M) indicate p < 0.001. b A diagram represents the proposed model in which the PKB−SPEG signaling nexus links insulin signaling with calcium
homeostasis in cardiomyocytes to maintain cardiac function. Upon insulin stimulation, PKB phosphorylates SPEG and activates its second kinase domain,
which consequently phosphorylates SERCA2a. Phosphorylation of SERCA2a increases its dimerization that enhances its Ca2+-transporting activity.
Impaired SPEG phosphorylation by PKB links insulin resistance with cardiac dysfunction through SERCA2a-mediated Ca2+ reuptake into the SR in
cardiomyocytes independent of metabolic assaults. Source data are provided as a Source Data file.
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pro-hypertrophic stimuli might also regulate the SPEG-SERCA2a
axis through activation of PKB under cardiac hypertrophic con-
ditions. This regulatory axis of PKB-SPEG-SERCA2a might not
only link to insulin resistance but also contribute to cardiac
dysfunction under other disease conditions. It is still unclear how
the SK1 of SPEG is regulated in the heart. It has been reported
that SPEG has a putative calmodulin binding site between SK1
and SK225, which is close to the PAS-reactive phosphorylation
sites identified in this study. SPEG belongs to the MLCK sub-
group of CaMK Ser/Thr protein kinase family and its SK1 is more
similar to other kinases within the MLCK group than is SK214.
Calmodulin binding is a common feature for MLCK kinase
members26 and might regulate the SK1 of SPEG.

Metabolic alterations and dysregulation of calcium homeostasis
are two features of the diabetic heart, which interacts with and
reinforces each other. The hexosamine biosynthesis pathway
integrates metabolism of glucose, lipid and amino acids to pro-
duce uridine diphosphate-N-acetylglucosamine for O-linked b-N-
acetylglucosamine (O-GlcNAc) modification of proteins27. In
T2D, the hexosamine biosynthesis pathway is activated, and the
resultant O-GlcNAcylation modifies a number of proteins to
decrease calcium cycling and sensitivity28. On the other hand,
changes of cellular calcium may also lead to metabolic alterations.
For instance, overexpression of SERCA2a in the heart increases
glucose oxidation and simultaneously decreases fatty acid oxi-
dation29. Knockout of PLB that enhances SERCA activity results
in an increase in oxygen consumption normalized for work30.
Our data show that the Speg3A-knockin mutation does not impair
systemic glucose and lipid metabolism. Moreover, it affects nei-
ther insulin-stimulated glucose uptake in isolated cardiomyocytes
nor expression of key regulators for glucose and lipid metabolism
in the heart. However, it is still possible that the decreased
SERCA2a activity or impaired cardiac function might impact on
cardiac metabolism in the Speg3A-knockin mice. Given the
importance of SPEG in the heart, a better understanding of
whether and how the Speg3A-knockin mutation affects cardiac
metabolism is needed.

In summary, we show that cardiac insulin resistance impairs
calcium homeostasis via the PKB− SPEG− SERCA2a pathway,
which contributes to the development of diabetic cardiomyo-
pathy. SPEG may serve as a new target to modulate SERCA2a
activation for treatment of diabetic cardiomyopathy.

Methods
Materials. Recombinant human insulin was purchased from Novo Nordisk
(Bagsvaerd, Denmark). High fat diet (60 kcal% fat, Cat. No. 12492) was from
Research Diets (USA). Protein G-Sepharose was bought from GE-Healthcare
(Little Chalfont, Buckinghamshire, UK). Precast NuPAGE® Bis-Tris gels were from
Thermo Fisher Scientific (Waltham, MA, USA). Akti1/2 was from Merck Millipore
(Darmstadt, Germany), and PI-103 was from Enzo Life Sciences (Farmingdale, NY,
USA). All other chemicals were from Sigma-Aldrich (Shanghai, China) or Sangon
Biotech (Shanghai, China). The commercial antibodies and resins are listed in
Supplementary Data 3. The antibodies recognizing RalGAPα1 and RalGAPα2 were
described previously31, and the pThr484-SERCA2a antibody was as previously
reported16.

Molecular biology. The cDNAs encoding mouse SPEG or human SERCA2a were
cloned into the vectors pcDNA5-FRT/TO-GFP or pcDNA5-FRT/TO-HA or
pcDNA5-FRT/TO-Flag for expression in mammalian cells. Fragmentation and
point mutation of SPEG were carried out using standard procedures. The sequence
contexts of mutated sites on SPEG are: PGLVRRLsLSLSQKL (Ser2413 in lower
case), LAVRRRLsstLERL (Ser2461/Ser2462/Thr2463 in lower case) and FGRLRRAt-
sEGESLR (Thr2498/Ser2499 in lower case). SPEG fragments were cloned into the
pGEX6P vector for protein expression in E. coli. All DNA constructs were
sequenced by Life Technologies (Shanghai, China).

Generation of the Speg3A-knockin mice. The Speg3A-knockin mice on C57Bl/6 J
background were generated using the CRISPR/Cas9-based strategy outlined in
Fig. 7a by the transgenic facility at Nanjing University. The cluster of serine/
threonine residues Ser2461/Ser2462/Thr2463 (the surrounding sequence is

LAVRRRLsstLERL, Ser2461/Ser2462/Thr2463 shown in lower case, and numbering is
according to NP_031489.4) on SPEG was substituted to alanine by knockin
mutagenesis. An XhoI enzyme restriction site was also introduced by changing the
Leu2464 encoding codon CTG to a synonymous codon CTC to facilitate geno-
typing. The Speg3A mice were genotyped by amplifying the mutated region (562
bp) using two primers (5’-CGGAGGACGACGGCATATAC-3’ and 5’-
CAGAGCCTGTCTCTAGCACAC-3’), followed by restriction digestion with XhoI
(280/282 bp cleaved products for Speg3A-knockins). The Speg3A-knockin mice were
backcrossed to C57Bl/6 J background for at least five generations before
experiments.

Animal breeding and husbandry. The Ethics Committee at Model Animal
Research Center of Nanjing University approved all animal procedures used in this
study, which are complied with all relevant ethical regulations. Mice and rats were
housed under a light/dark cycle of 12 h, and had free access to food and water
unless stated.

PKBαf/f and PKBβ knockout mice were previously reported32,33, and used to
generate mice with PKBα/β double knockout in the heart.

Heterozygote X heterozygote mating was set up to produce Speg3A-knockin
homozygotes and wild-type (WT) littermates.

Blood chemistry. Blood was collected via tail bleeding, and glucose, free fatty acid,
triglyceride and total cholesterol in the blood were measured using a Breeze 2
glucometer (Bayer), Wako LabAssay NEFA kit (294-63601), LabAssay Triglyceride
(290-63701), and LabAssay Cholesterol kit (294-65801) (Wako Chemicals USA),
respectively.

Insulin injection and oral glucose tolerance test. Mice were restricted from food
access overnight (16 h). For insulin injection, mice were anaesthetised and intra-
peritoneally injected with a bolus of insulin (150 mU insulin per g of body weight)
for 20 min before terminated by cervical dislocation for tissue collection. For oral
glucose tolerance test, mice were administered via oral gavage with a bolus of
glucose (1.5 mg glucose per g of body weight). Blood glucose levels were deter-
mined at the indicated time points.

Tissue homogenization and lysis. Mouse tissues were harvested, snap-frozen in
liquid nitrogen, and homogenized in lysis buffer (50 mM Tris-HCl (pH 7.4), 1 mM
EDTA, 1 mM EGTA, 1% (v/v) Triton X-100, 1 mM sodium ortho-vanadate, 10 mM
sodium glycerophosphate, 50 mM sodium fluoride 5 mM sodium pyrophosphate,
0.27 M sucrose, 2 µM microcystin-LR, 1 mM benzamidine, 0.1% (v/v) 2-mercap-
toethanol, 0.2 mM phenylmethanesulfonyl fluoride, 1 mg/ml Leupeptin, 1 mg/ml
Pepstatin and 1 mg/ml Aprotinin) using a Polytron homogenizer (Kinematica,
Luzern, Switzerland). After lysed on ice for 30 min, tissue homogenates were
centrifuged to remove tissue debris. Protein concentrations of tissue lysates were
measured using Bradford reagent (Thermo Fisher Scientific).

Immunoprecipitation and immunoblotting. For immunoprecipitation of target
proteins, tissue or cell lysates were incubated with antibody-coupled protein G-
Sepharose or GFP-binder (ChromoTek GmbH, Planegg-Martinsried, Germany) for
16 h at 4 °C. After non-specific binding proteins were removed from resins through
washing, immunoprecipitates were eluted in SDS sample buffer.

For immunoblotting, lysates or immunoprecipitates were separated via SDS-
PAGE and immunoblotted onto nitrocellulose membranes that were probed with
primary and secondary antibodies. Membranes were then incubated with ECL
substrates (GE-Healthcare, UK), and chemiluminescence signals were detected
using a gel documentation system (Syngene, UK).

Mass-spectrometry. Protein immunoprecipitates were electrophoretically sepa-
rated via SDS-PAGE and stained with Coommassie dye. After excised from gels,
protein bands were digested with trypsin. Resultant peptides were further separated
via a Dionex 3000 nano liquid chromatography system and analysed by LC-MS on
an LTQ-Orbitrap (Thermo Finnigan) mass spectrometer. Mascot generic format
(MGF) files were obtained from raw files using raw2msm v1.7 software (Matthias
Mann), and searched using a Mascot 2.2 in-house server against the Swiss-Prot
database to identify peptides and proteins.

In vitro phosphorylation. The recombinant GST-SPEGP2227-S2583 proteins were
expressed in E. coli and purified using glutathione-Sepharose 4B (GE-Healthcare).
The purified GST-SPEGP2227-S2583 proteins were in vitro phosphorylated by a His-
PKB-S473D expressed in insect cells and activated by PDK1 at 30 °C for 30 min.
The reaction was stopped by addition of laemmli sample buffer.

Echocardiography (Echo). Mice were anaesthetized with gaseous isoflurane and
subjected to Echo analysis via a Vevo 770 high-resolution in vivo micro-imaging
system (VisualSonics, inc) with a 30MHz RMV-707B ultrasonic probe. M-mode
pictures were collected and used to determine the following parameters: left ven-
tricle anterior wall (LVAW), left ventricle posterior wall (LVPW), left ventricle
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internal dimension (LVID), and left ventricle volume (LV Vol) of systole and
diastole. The equation to calculate ejection fraction (EF) is EF%= [(LV Vol;d − LV
Vol;s)/LV Vol;d] × 100%, and fractional shortening (FS) is FS%= [(LVID;d −
LVID;s)/LVID;d] × 100%.

Isolation of primary cardiomyocytes. Primary mouse cardiomyocytes were iso-
lated from the heart of heparin-treated mice using a collagenase-based method 34.
A collagenase solution (1 mg/ml) was perfused into the heart using a Langendorff
system (ADInstruments). The resultant cell suspension was filtered through a
100 μm cell strainer. Primary cardiomyocytes were then washed for three times in
Krebs-Henseleit buffer B containing 5 mM taurine and 10 mM 2,3-butanedione
monoximine with Ca2+ (0.1 mM for the first round, 0.2 mM for the second round,
and 0.6 mM for the third round).

Primary neonatal rat cardiomyocytes was isolated from ventricles of neonatal
animals (postnatal day 0–3, rat strain Sprague Dawley). Minced ventricle cubes
were digested with 0.25% trypsin at 4 °C overnight, and further incubated with
collagenase (1 mg/ml) at 37 °C for 15 min. After removal of undigested tissue
debris, cell suspensions were plated in DMEM containing 10% (v/v) foetal bovine
serum for 1 h. Within this period, fibroblasts were settled down and removed.
Cardiomyocytes were reseeded in fresh DMEM plus 10% (v/v) foetal bovine serum,
and transfected with plasmids using Lipofectamine 3000 reagent (Thermo Fisher
Scientific).

Calcium imaging in primary cardiomyocytes. Calcium transient assay was car-
ried out in primary rat or mouse cardiomyocytes using a Fluo-4-AM based
method35. Primary cardiomyocytes were resuspended in Hanks buffer containing
1 mM MgCl2, 1 mM CaCl2 and 2% (w/v) BSA, and incubated with 5 μM Fluo-4-
AM (Thermo Fisher Scientific). After incubation, cells were then stimulated using a
GRASS S48 stimulator (frequency 0.5 Hz, duration 60 ms, decay 40 ms, voltage
80 V, repeat). A line-scan mode was set for a Zeiss LSM510 confocal microscope to
take images that were analyzed using IDL5.5 (Harris Geospatial Solutions). The
decay time (Tau) was determined via the period lasting from the peak of calcium
transients to 63% from the peak to the basal level in the fading phase.

Imaging and analysis of t-tubule (TT). TT organization was analysed using a Di-
8-ANEPPS based method36. Primary cardiomyocytes were stained with Di-8-
ANEPPS (10 μM) for 15 min. After staining, images were taken using a Carl Zeiss
880 confocal microscope. Fast Fourier Transforms of cell images were used to
quantify TT organization. The peak amplitude (called TT power) in the Fourier
spectrum of cell images at the TT frequency was analyzed using ImageJ software
with a plugin TTorg (http://mirror.imagej.net/plugins/ttorg).

Measurements of Ca2+-ATPase activity and Ca2+ uptake. The ATPase activity
of SERCA2 was determined in microsomes containing crude SR membrane vesicles
via measurement of inorganic phosphate (Pi) released from ATP hydrolysis37. The
reaction was carried out by incubating microsomes (50 μg protein) with an assay
buffer containing 100 mM KCl, 10 mM HEPES (pH 7.4), 5 mM MgCl2, 100 μM
CaCl2, 1.5 mM ATP, 2 μM A23187, and 5 mM sodium azide in the absence (total
activity) or presence of 5 μM thapsigargin (activity of thapsigargin-insensitive
calcium pumps) at 30 °C for 30 min, and stopped by adding ice-cold 10% TCA.
The thapsigargin-insensitive Ca2+-ATPase activity was subtracted from total
activity to obtain the activity of thapsigargin-sensitive Ca2+-ATPase (SERCA2-
ATPase).

Ca2+ uptake in microsomes was determined using a Fura-2 based method38.
Isolated microsomes were incubated with 2 μM Fura-2 free acid in assay buffer
(100 mM KCl, 10 mM HEPES-KOH (pH 7.4), 10 mM oxalate, 5 mM MgCl2, and
10 μM ruthenium red). The uptake of Fura-2 into microsomes was initiated by
addition of 5 mM ATP and 2 μM Ca2+. The fluorescence was excited at 340 and
380 nM, respectively, and recorded at 510 nM emission using a fluorescence
microplate reader (BioTek). Free Ca2+ in the microplate was calculated from the

Fura-2 fluorescence using the equation, Free calcium ¼ Kd ´ β ´ R�Rminð Þ
Rmax�Rð Þ, where R

is the ratio of 510-nm emission fluorescence intensity excited at 340 and 380 nM39.
Rmax and Rmin were determined by addition of 10 mM Ca2+ or 25 mM EGTA in
assay buffer, respectively. The assumed dissociation constant (Kd) for Fura-2/Ca2+

was 200 nM39. β is the ratio of fluorescence intensity of Ca2+ free and Ca2+ bound
form of Fura-2 at 380 nM. The free Ca2+ versus assay duration was analysed using
Clampfit 10.4 (Molecular Devices). The linear portion of the slope after addition of
Ca2+ was used for calculation of Ca2+ uptake rates in microsomes.

Cell culture and transfection. Human embryonic kidney HEK293 cells and rat
H9C2 cardiomyocytes were obtained from the Cell Resource Center, Chinese
Academy of Medical Sciences and Peking Union Medical College (China), and
cultured in DMEM medium containing 10% (v/v) foetal bovine serum. Tests for
mycoplasma contamination were carried out regularly. Transfection of cells with
plasmid DNA was carried out using Lipofectamine 3000 reagent (Thermo Fisher
Scientific). Cells were lysed in lysis buffer on ice for 30 min at 2 days after trans-
fection. H9C2 cardiomyocytes were differentiated in DMEM medium containing
1% (v/v) foetal bovine serum and 1 μM retinoic acid for 7 days.

Calcium transient assay in HEK293 cells. HEK293 cells expressing SERCA2a
together with SPEG or an empty vector were incubated with 5 μM Fluo-4-AM.
Afterwards, cells were stimulated with 200 μM carbamylcholine. A frame scan mode
was set for an Olympus confocal microscope to take images of cells for ~270 sec.

Fluorescence resonance energy transfer (FRET) assay. ECFP-SERCA2a and
EYFP-SERCA2a plasmids (1:1 molar ratio) were transfected into HEK293 cells
together with HA-SPEG or empty vector. Two days after transfection, cells co-
expressing ECFP-SERCA2a and EYFP-SERCA2a were selected for FRET assay
using a Leica SP5 confocal microscope, as described in the Leica FRET Sensitized
Emission application manual. Calculation of FRET efficiency was performed
using the following formula: FRET Efficiency (%)= (FRET signal-β*Donor
Signal-γ*Acceptor signal)/(Acceptor signal), where β is obtained with donor
only specimen and calculated as β= SignalindirectAcceptor/SignalDonor, and γ is
obtained with acceptor only specimen and calculated as γ= SignalIndirectAcceptor/
SignalDirectAcceptor.

Statistical and reproducibility. Data were analyzed via t-test for two groups, or
via one-way or two-way ANOVA for multiple groups using Prism software
(GraphPad, San Diego, CA, USA), and differences were considered statistically
significant at p < 0.05. Individual data points are shown when n ≤ 10.

Except for mass-spec experiments, similar results were obtained from at least
two experiments.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this published article
(and its supplementary information files). The proteomic datasets can be downloaded
from the MassIVE Repository in University of California, San Diego (ftp://massive.ucsd.
edu/MSV000085228/ and ftp://massive.ucsd.edu/MSV000085229/). All remaining data
are available from the corresponding author upon reasonable request.

The source data underlying Figs. 1a-f, 2a-f, 3a-g, 4a-e, 4g-k, 5a-d, 6a-e, 7b-d, 8a-h, 8j-k
and 9a and Supplementary Figs 1a-l, 2, 3b, c, f, 4a-g, 5a, 6b-c, 7b, 8a-g, 9a-d, 10a, c, 11,
12a and d are provided as a Source Data file.
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