17 research outputs found

    Investigation of quasi-periodic variations in hard X-rays of solar flares. II. Further investigation of oscillating magnetic traps

    Get PDF
    In our recent paper (Solar Physics 261, 233) we investigated quasi-periodic oscillations of hard X-rays during impulsive phase of solar flares. We have come to conclusion that they are caused by magnetosonic oscillations of magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the present paper we investigate four flares which show clear quasi-periodic sequences of HXR pulses. We also describe our phenomenological model of oscillating magnetic traps to show that it can explain observed properties of HXR oscillations. Main results are the following: 1. We have found that low-amplitude quasi-periodic oscillations occur before impulsive phase of some flares. 2. We have found that quasi-period of the oscillations can change in some flares. We interpret this as being due to changes of the length of oscillating magnetic traps. 3. During impulsive phase a significant part of the energy of accelerated (non-thermal) electrons is deposited within the HXR loop-top source. 4. Our analysis suggests that quick development of impulsive phase is due to feedback between pulses of the pressure of accelerated electrons and the amplitude of magnetic-trap oscillation. 5. We have also determined electron number density and magnetic filed strength for HXR loop-top sources of several flares. The values fall within the limits of N(215)×1010N \approx (2 -15) \times 10^{10} cm3^{-3}, B(45130)B \approx (45 - 130) gauss.Comment: 18 pages, 14 figures, submitted to Solar Physic

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Measurements of fiducial cross-sections for t\bart production with one or two additional b-jets in pp collisions at √s =8 TeVusing the ATLAS detector

    Get PDF
    Fiducial cross-sections for ttˉt\bar{t} production with one or two additional bb-jets are reported, using an integrated luminosity of 20.3 fb1^{-1} of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for ttˉt\bar{t} events with at least one additional bb-jet is measured to be 950 ±\pm 70 (stat.) 190+240^{+240}_{-190} (syst.) fb in the lepton-plus-jets channel and 50 ±\pm 10 (stat.) 10+15^{+15}_{-10} (syst.) fb in the eμe \mu channel. The cross-section times branching ratio for events with at least two additional bb-jets is measured to be 19.3 ±\pm 3.5 (stat.) ±\pm 5.7 (syst.) fb in the dilepton channel (eμe \mu,\,μμ\mu\mu, and \,eeee) using a method based on tight selection criteria, and 13.5 ±\pm 3.3 (stat.) ±\pm 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 ±\pm 0.33 (stat.) ±\pm 0.28 (syst.)\% for the ratio of ttˉt\bar{t} production with two additional bb-jets to ttˉt\bar{t} production with any two additional jets. All measurements are in good agreement with recent theory predictions.Comment: 41 pages plus author list + cover page (58 total), 9 Figures, 16 tables, submitted to EPJC, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2014-10
    corecore