114 research outputs found

    Efficient computation of condition estimates for linear least squares problems

    Get PDF
    Linear least squares (LLS) is a classical linear algebra problem in scientific computing, arising for instance in many parameter estimation problems. In addition to computing efficiently LLS solutions, an important issue is to assess the numerical quality of the computed solution. The notion of conditioning provides a theoretical framework that can be used to measure the numerical sensitivity of a problem solution to perturbations in its data. We recall some results for least squares conditioning and we derive a statistical estimate for the conditioning of an LLS solution. We present numerical experiments to compare exact values and statistical estimates. We also propose performance results using new routines on top of the multicore-GPU library MAGMA. This set of routines is based on an efficient computation of the variance-covariance matrix for which, to our knowledge, there is no implementation in current public domain libraries LAPACK and ScaLAPACK

    Catalysis of the hydrogen evolution reaction by hydrogen carbonate to decrease the voltage of microbial electrolysis cell fed with domestic wastewater

    Get PDF
    Microbial electrolysis applied to wastewater treatment allows hydrogen to be produced at low cost, provided that the cell voltage is as low as possible. Here, hydrogen production at low cell voltage was optimized through the use of a carbonate solution that acted as a homogeneous catalyst of hydrogen evolution on stainless steel cathodes at mild pH and allowed the conductivity to be increased near the cathode. Replacing wastewater by a 1 M carbonate solution as the catholyte allowed the cathode potential to be reduced by 380 mV at −10 A/m2. Optimizing the pH in the range of 7–12 revealed that the key species in water reduction catalysis was HCO3− and that the reaction rate was highest at pH 8. Tests with various materials (stainless steels, nickel alloy and graphite) as cathodes showed that the catalytic effect of HCO3− ions was highest on stainless steels containing Ni, Mo and Mn, such as 316L or 254SMO

    Modelling potential/current distribution in microbial electrochemical systems shows how the optimal bioanode architecture depends on electrolyte conductivity

    Get PDF
    The theoretical bases for modelling the distribution of the electrostatic potential in microbial electrochemical systems are described. The secondary potential distribution (i.e. without mass transport limitation of the substrate) is shown to be sufficient to validly address microbial electrolysis cells (MECs). MECs are modelled with two different ionic conductivities of the solution (1 and 5.3 S m−1) and two bioanode kinetics (jmax = 5.8 or 34 A m−2). A conventional reactor configuration, with the anode and the cathode face to face, is compared with a configuration where the bioanode perpendicular to the cathode implements the electrochemical reaction on its two sides. The low solution conductivity is shown to have a crucial impact, which cancels out the advantages obtained by setting the bioanode perpendicular to the cathode. For the same reason, when the surface area of the anode is increased by multiplying the number of plates, care must be taken not to create too dense anode architecture. Actually, the advantages of increasing the surface area by multiplying the number of plates can be lost through worsening of the electrochemical conditions in the multi-layered anode, because of the increase of the electrostatic potential of the solution inside the anode structure. The model gives the first theoretical bases for scaling up MECs in a rather simple but rigorous way

    Benchmarking of Industrial Synthetic Graphite Grades, Carbon Felt, and Carbon Cloth as Cost-Efficient Bioanode Materials for Domestic Wastewater Fed Microbial Electrolysis Cells

    Get PDF
    Anode material selection is crucial when it comes to building up-scaled microbialelectrolysis cells (MEC), as it has a huge influence on the achievable current density and account for a large part of the MEC total investment cost. Graphite is a material that isperfectly suited to the creation of up-scaled bioanodes as it is conductive, chemically stable, biocompatible, and relatively cheap but there are a very large number of commercially available grades of industrial graphite. In this study, five grades of industrial synthetic graphite (named G1–G5) were bench tested to select the most suitable gradefor future development of 3D bioanode for domestic wastewater (dWW) fed MEC application. The five grades of graphite have been selected with similar physico-chemicaland surface properties (electrical resistivity, surface roughness, and hydrophobicity) theoretically appropriate for EA biofilm development. Nevertheless, significant current density disparities where observed with the five graphite grades, which can certainlybe explained by the fabrication procedures of the respective material grades. With thegraphite grade giving the most efficient anodes (G3), an average steady state currentdensity of 2.3 A/m²was produced, outperforming the other grades by at least 15%.Even though all graphites had very close physico-chemical characteristics, the gradehad a clear significant influence on the current densities produced. G3 graphite was finally compared to carbon felt (CF) and carbon cloth (CC) both in terms of bio-electrochemicalcurrent production and bacterial communities colonizing electrodes. G3 bioanodes outperformed CF and CC bioanodes by 50% in term of steady state current density.Biofilms microbial population analysis showed that theGeobacterspecies was presentat 82% on G3 bioanodes, 39% on CF bioanodes, and 61% on CC bioanodes when it was only present at 0.06% in the activated sludge used as inoculum. This significant difference in bacterial enrichment could come from the huge gap between materials resistivity, as graphite resistivity is 200-fold lower than CF and CC resistivities. The strongly hydrophilic surface of G3 graphite was also certainly beneficial for biofilm development compared tothe hydrophobic surfaces of CF and CC

    Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater

    Get PDF
    Acid and electrochemical surface treatments of graphite electrode, used individually or in combination, significantly improved the microbial anode current production, by +17% to +56%, in well-regulated and duplicated electroanalytical experimental systems. Of all the consequences induced by surface treatments, the modifications of the surface nano-topography preferentially justify an improvement in the fixation of bacteria, and an increase of the specific surface area and the electrochemically accessible surface of graphite electrodes, which are at the origin of the higher performances of the bioanodes supplied with domestic wastewater. The evolution of the chemical composition and the appearance of C-O, C=O, and O=C-O groups on the graphite surface created by combining acid and electrochemical treatments was prejudicial to the formation of efficient domestic-wastewater-oxidizing bioanodes. The comparative discussion, focused on the positioning of the performances, shows the industrial interest of applying the surface treatment method to the world of bioelectrochemical systems

    Pleth variability index and fluid management practices: a multicenter service evaluation.

    Get PDF
    peer reviewed[en] OBJECTIVES: The introduction of a new technology has the potential to modify clinical practices, especially if easy to use, reliable and non-invasive. This observational before/after multicenter service evaluation compares fluid management practices during surgery (with fluids volumes as primary outcome), and clinical outcomes (secondary outcomes) before and after the introduction of the Pleth Variability Index (PVI), a non-invasive fluid responsiveness monitoring. RESULTS: In five centers, 23 anesthesiologists participated during a 2-years period. Eighty-eight procedures were included. Median fluid volumes infused during surgery were similar before and after PVI introduction (respectively, 1000 ml [interquartile range 25-75 [750-1700] and 1000 ml [750-2000]). The follow-up was complete for 60 from these and outcomes were similar. No detectable change in the fluid management was observed after the introduction of a new technology in low to moderate risk surgery. These results suggest that the introduction of a new technology should be associated with an implementation strategy if it is intended to be associated with changes in clinical practice

    Brief Communication External globus pallidus stimulation modulates brain connectivity in Huntington's disease

    Get PDF
    Positron emission tomography with O-15-labeled water was used to study at rest the neurophysiological effects of bilateral external globus pallidus (GPe) deep brain stimulation in patients with Huntington's disease (HD). Five patients were compared with a control group in the on and off states of the stimulator. External globus pallidus stimulation decreased neuronal activity and modulated cerebral connectivity within the basal ganglia-thalamocortical circuitry, the sensorimotor, and the default-mode networks. These data indicate that GPe stimulation modulates functional integration in HD patients in accordance with the basal ganglia-thalamocortical circuit model

    Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy

    Get PDF
    Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore