565 research outputs found
Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles
Citation: Waite, K. A., De-La Mota-Peynado, A., Vontz, G., & Roelofs, J. (2016). Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles. Journal of Biological Chemistry, 291(7), 3239-3253. doi:10.1074/jbc.M115.699124The proteasome is responsible for the degradation of many cellular proteins. If and how this abundant and normally stable complex is degraded by cells is largely unknown. Here we show that in yeast, upon nitrogen starvation, proteasomes are targeted for vacuolar degradation through autophagy. Using GFP-tagged proteasome subunits, we observed that autophagy of a core particle (CP) subunit depends on the deubiquitinating enzyme Ubp3, although a regulatory particle (RP) subunit does not. Furthermore, upon blocking of autophagy, RP remained largely nuclear, although CP largely localized to the cytosol as well as granular structures within the cytosol. In all, our data reveal a regulated process for the removal of proteasomes upon nitrogen starvation. This process involves CP and RP dissociation, nuclear export, and independent vacuolar targeting of CP and RP. Thus, in addition to the well characterized transcriptional up-regulation of genes encoding proteasome subunits, cells are also capable of down-regulating cellular levels of proteasomes through proteaphagy
Heating Titan's upper atmosphere
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95339/1/jgra19338.pd
Composition of Titan's ionosphere
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94758/1/grl21212.pd
Simulating the oneâdimensional structure of Titan's upper atmosphere: 2. Alternative scenarios for methane escape
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94984/1/jgre2821.pd
The translocator protein (TSPO) genetic polymorphism A147T is associated with worse survival in male glioblastoma patients
Glioblastoma (GBM) is the most common primary brain tumor in adults, with few available therapies and a five-year survival rate of 7.2%. Hence, strategies for improving GBM prognosis are urgently needed. The translocator protein 18kDa (TSPO) plays crucial roles in essential mito-chondria-based physiological processes and is a validated biomarker of neuroinflammation, which is implicated in GBM progression. The TSPO gene has a germline single nucleotide polymorphism, rs6971, which is the most common SNP in the Caucasian population. High TSPO gene expression is associated with reduced survival in GBM patients; however, the relation between the most fre-quent TSPO genetic variant and GBM pathogenesis is not known. The present study retrospectively analyzed the correlation of the TSPO polymorphic variant rs6971 with overall and progression-free survival in GBM patients using three independent cohorts. TSPO rs6971 polymorphism was signif-icantly associated with shorter overall survival and progression-free survival in male GBM patients but not in females in one large cohort of 441 patients. We observed similar trends in two other independent cohorts. These observations suggest that the TSPO rs6971 polymorphism could be a significant predictor of poor prognosis in GBM, with a potential for use as a prognosis biomarker in GBM patients. These results reveal for the first time a biological sex-specific relation between rs6971 TSPO polymorphism and GBM
Understanding Marine Mussel Adhesion
In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion
Simulating the oneâdimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan Global IonosphereâThermosphere Model and benchmark simulations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94638/1/jgre2819.pd
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5â-amino-5â-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
Simulating the oneâdimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94596/1/jgre2822.pd
On the abundance of non-cometary HCN on Jupiter
Using one-dimensional thermochemical/photochemical kinetics and transport
models, we examine the chemistry of nitrogen-bearing species in the Jovian
troposphere in an attempt to explain the low observational upper limit for HCN.
We track the dominant mechanisms for interconversion of N2-NH3 and HCN-NH3 in
the deep, hightemperature troposphere and predict the rate-limiting step for
the quenching of HCN at cooler tropospheric altitudes. Consistent with other
investigations that were based solely on time-scale arguments, our models
suggest that transport-induced quenching of thermochemically derived HCN leads
to very small predicted mole fractions of hydrogen cyanide in Jupiter's upper
troposphere. By the same token, photochemical production of HCN is ineffective
in Jupiter's troposphere: CH4-NH3 coupling is inhibited by the physical
separation of the CH4 photolysis region in the upper stratosphere from the NH3
photolysis and condensation region in the troposphere, and C2H2-NH3 coupling is
inhibited by the low tropospheric abundance of C2H2. The upper limits from
infrared and submillimeter observations can be used to place constraints on the
production of HCN and other species from lightning and thundershock sources.Comment: 56 pages, 0 tables, 6 figures. Submitted to Faraday Discussions [in
press
- âŠ