144 research outputs found

    APETx4, a novel sea anemone toxin and a modulator of the cancer-relevant potassium channel K<sub>V</sub>10.1

    Get PDF
    The human ether-Ă -go-go channel (hEag1 or KV10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-Ă -go-go-related gene potassium channel (hERG or Kv11.1). The toxin inhibits KV10.1 with an IC50 value of 1.1 ÎŒM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a scaffold for the design and synthesis of more potent and safer anticancer drugs

    Airway hyperresponsiveness, inflammation, and pulmonary emphysema in rodent models designed to mimic exposure to fuel oil-derived volatile organic compounds encountered during an experimental oil spill

    Get PDF
    Fuel oil-derived volatile organic compounds (VOCs) inhalation is associated with accidental marine spills. After the Prestige petroleum tanker sank off northern Spain in 2002 and the Deepwater Horizon oil rig catastrophe in 2009, subjects involved in environmental decontamination showed signs of ongoing or residual lung disease up to 5 y after the exposure. We aimed at investigating mechanisms driving persistent respiratory disease by developing an animal model of inhalational exposure to fuel oil-derived VOCs. Female Wistar and Brown Norway (BN) rats and C57BL mice were exposed to VOCs produced from fuel oil mimicking the Prestige spill. Exposed animals inhaled the VOCs 2 h daily, 5 d per week, for 3 wk. Airway responsiveness to methacholine (MCh) was assessed, and bron-choalveolar lavage (BAL) and lung tissues were analyzed after the exposure and following a 2-wk washout. Consistent with data from human studies, both strains of rats that inhaled fuel oil-derived VOCs developed airway hyperresponsiveness that persisted after the washout period, in the absence of detectable inflammation in any lung compartment. Histopathology and quantitative morphology revealed the development of peripherally distributed pulmonary emphysema, which persisted after the washout period, associated with increased alveolar septal cell apoptosis, microvascular endothelial damage of the lung parenchyma, and inhibited expression of vascular endothelial growth factor (VEGF). In this rat model, fuel oil VOCs inhalation elicited alveolar septal cell apoptosis, likely due to DNA damage. In turn, the development of a peculiar pulmonary emphysema pattern altered lung mechanics and caused persistent noninflammatory airway hyperresponsiveness. Such findings suggest to us that humans might also respond to VOCs through physiopathological pathways different from those chiefly involved in typical cigarette smoke-driven emphysema in chronic obstructive pulmonary disease (COPD). If so, this study could form the basis for a novel disease mechanism for lasting respiratory disease following inhalational exposure to catastrophic fuel oil spills

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,Îł) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well

    Characterization of the n-TOF EAR-2 neutron beam

    Get PDF
    The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n-TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam prole and the shape of the neutron 'ux at EAR-2. The prompt Îł-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this Îł-flash

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    New measurement of the 242Pu(n,Îł) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR

    Get PDF
    The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters

    The measurement programme at the neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented

    Cross section measurements of 155,157Gd(n, Îł) induced by thermal and epithermal neutrons

    Get PDF
    Neutron capture cross section measurements on Gd and Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 CD liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for Gd and Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for Gd and Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 and 2. 17 (41) × 10 ; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + Gd and n + Gd systems, respectively

    Measurement of the 72Ge(n,Îł) cross section over a wide neutron energy range at the CERN n_TOF facility

    Get PDF
    The Ge72(n,Îł) cross section was measured for neutron energies up to 300keV at the neutron time-of-flight facility n_TOF (CERN), Geneva, for the first time covering energies relevant to heavy-element synthesis in stars. The measurement was performed at the high-resolution beamline EAR-1, using an isotopically enriched GeO272 sample. The prompt capture Îł rays were detected with four liquid scintillation detectors, optimized for low neutron sensitivity. We determined resonance capture kernels up to a neutron energy of 43keV, and averaged cross sections from 43 to 300keV. Maxwellian-averaged cross section values were calculated from kT=5 to 100keV, with uncertainties between 3.2% and 7.1%. The new results significantly reduce uncertainties of abundances produced in the slow neutron capture process in massive stars
    • 

    corecore