42 research outputs found

    Flood Disaster Relief Operation: A Systematic Literature Review

    Get PDF
    A flood is natural disaster that often occurs in many regions. Flood has a significant impact on the nature conditions, local communities, and regional economic losses. The flood can happen due to a damaged environmental system; therefore, it needs deeper study and extra effort to prevent it. Thus, an appropriate and right Disaster Relief Operation (DRO) is needed in responding to flood disaster. In this research, 50 articles categorized in "flood disaster relief operation" published in the range 2012 to 2022 have been reviewed. This review is conducted by using the Systematic Literature Review (SLR) method. This study aims to explore and analyze flood DRO. The findings reveal that the flood DRO still has several weaknesses in the current system that should be improved: the lack of an integrated information system, not enough collaboration of the stakeholders, the lateness of information exchange, and unplanned relief operations through the preparation. For further research, it is recommended to implement the proposed system in the relief operations execution

    Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    Get PDF
    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy (0.75 keV) enhancements in the fourth and first quadrants. Tunnels and cavities are found to coincide with the main bright areas, however no tunnel nor cavity is found to match the low-latitude b > or approx. 8deg, brightest part of the NPS. In addition, the comparison between the 3D maps and published spectral data favors a NPS central source region location beyond 230 pc, i.e. at larger distance than usually considered. Those examples illustrate the potential use of more detailed 3D distributions of the nearby ISM for the interpretation of the diffuse soft X-ray background

    Biological Study of Two Spotted Spider Mite Tetranychus SP. (Acari: Tetranychidae) on Three Leaf Phases of Mung Bean and Adzuki Bean for Mite Mass Rearing

    Full text link
    Two-spotted spider mite (TSM) Tetranychus sp. is one of prey mites for phyotoseiid mite mass rearing. Based on previous research that TSM population developed well on Mung bean (Vigna radiata) and Adzuki bean (V. angularis) as host plants, confirmed growth and development of TSM on both beans. Research was aimed to observe biology of TSM on three phases of Mung bean and Adzuki bean leaf such as at primary leaf unrolled completely (V1), at the 1st trifoliate unrolled completely (V2), and at the 2nd trifoliate unrolled completely (V3). Pre adult stadia, life cycle, male and female longevity, female fecundity of TSM, and trichome density were observed on petri dishes contained each leaf phase of beans. Result showed that three leaf phases of beans did not influence significantly in all biological variables, except fecundity. TSM fecundity was the highest on V3 phase of Mung bean (86.90). Trichome density on Mung bean leaf surface per mm² was lower than Adzuki bean. Trichome density of upper leaf surface of V3 phase of Mung bean (10.53) and Adzuki bean (3.07) were lower than V1 (13.20; 12.40) and V2 phase (6.20; 5.27). V3 phase of Mung bean was most suitable for TSM mass rearing

    Distance to the northern high-latitude HI shells

    Full text link
    A detailed 3D distribution of interstellar matter in the solar neighborhood is increasingly necessary. As part of a 3D mapping program, we aim at assigning a precise distance to the high-latitude HI gas in particular the northern part (b \geq 55^{circ}) of the shell associated with the conspicuous radio continuum Loop I. This shell is thought to be the expanding boundary of an interstellar bubble inflated and recently reheated by the strong stellar winds of the nearby Scorpius-Centaurus OB. We recorded high-resolution spectra of 30 A-type target stars located at various distances in the direction of the northern part of Loop I. Interstellar NaI 5889-5895 and CaII K-H 3934-3968 {\AA} are modeled and compared with the HI emission spectra from the LAB Survey. About two-thirds of our stellar spectra possess narrow interstellar lines. Narrow lines are located at the velocity of the main, low-velocity Loop 1 HI shell ([-6,+1] km/s in the LSR). Using Hipparcos distances to the target stars, we show that the closest boundary of the b geq+70^{\circ} part of this low-velocity Loop I arch is located at of 98 \pm 6 pc. The corresponding interval for the lower-latitude part (55^{\circ} \leq b \leq 70^{\circ}) is 95-157 pc. However, since the two structures are apparently connected, the lower limit is more likely. At variance with this shell, the second HI structure, which is characterized by LSR Doppler velocities centered at -30 km/s, is NOT detected in any of the optical spectra. It is located beyond 200 parsecs or totally depleted in NaI and CaII. We discuss these results in the light of spherical expanding shells and show that they are difficult to reconcile with simple geometries and a nearby shell center close to the Plane. Instead, this high-latitude gas seems to extend the inclined local chimney wall to high distances from the Plane.Comment: Astronomy & Astrophysics (A&A in press

    Peningkatan Kapasitas Kurikulum 2013 Pendidikan Usia Dini pada Guru dan Pengelola PAUD Al Birru Nasyiatul Aisyiyah

    Full text link
    Early Childhood Education (PAUD) is an embryo of children's education in shaping a generation of people who are superior and dignified. Education provided to children aged 0-6 years primarily introduces physical activity to stimulate the child's motoric development, affection and introduce the process of socializing to children. Considering the importance of PAUD, the curriculum 2013 PAUD has now been developed, where previously there was no specific curriculum that could be used in the learning process in PAUD. Applying the curriculum 2013, the teachers still did not have enough capacity to be able to translate the concepts of the curriculum into the learning process. Therefore, training was carried out in an effort to increase capacity in the application of the Curriculum 2013 PAUD. The analytical method used is descriptive analysis and inference. The result of this activity is that there is a change in knowledge about the 2013 PAUD curriculum for the training participants. Participants give evaluators on the implementation of training in general is good. Outcome of this training the participants are required to disseminate the curriculum 2013 PAUD materia

    The Gaia-ESO Survey : Extracting diffuse interstellar bands from cool star spectra: DIB-based interstellar medium line-of-sight structures at the kpc scale

    Get PDF
    Date of Acceptance: 05/10/2014Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods. We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results. We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ∼2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions. For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra, and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ by ≳∼30 km s-1, in agreement with HI emission spectra. On the other hand, if most targets are located beyond the main absorber, DIBs can trace the differential reddening within the field.Peer reviewedFinal Accepted Versio

    Pressure Equilibrium Between The Local Interstellar Clouds And The Local Hot Bubble

    Get PDF
    This is the published version. Copyright © 2014. The American Astronomical Society. All rights reserved.Three recent results related to the heliosphere and the local interstellar medium (ISM) have provided an improved insight into the distribution and conditions of material in the solar neighborhood. These are the measurement of the magnetic field outside of the heliosphere by Voyager 1, the improved mapping of the three-dimensional structure of neutral material surrounding the Local Cavity using extensive ISM absorption line and reddening data, and a sounding rocket flight which observed the heliospheric helium focusing cone in X-rays and provided a robust estimate of the contribution of solar wind charge exchange emission to the ROSAT All-Sky Survey 1/4 keV band data. Combining these disparate results, we show that the thermal pressure of the plasma in the Local Hot Bubble (LHB) is P/k = 10,700 cm−3 K. If the LHB is relatively free of a global magnetic field, it can easily be in pressure (thermal plus magnetic field) equilibrium with the local interstellar clouds, eliminating a long-standing discrepancy in models of the local ISM

    Optical spectroscopy of Be/gamma-ray binaries

    Get PDF
    © ESO, 2016.We report optical spectroscopic observations of the Be/γ-ray binaries LSI+61303, MWC 148 and MWC 656. The peak separation and equivalent widths of prominent emission lines (Hα, Hβ, Hγ, HeI, and FeII) are measured. We estimated the circumstellar disc size, compared it with separation between the components, and discussed the disc truncation. We find that in LSI+61°303 the compact object comes into contact with the outer parts of the circumstellar disc at periastron, in MWC 148 the compact object goes deeply into the disc during the periastron passage, and in MWC 656 the black hole is accreting from the outer parts of the circumstellar disc along the entire orbit. The interstellar extinction was estimated using interstellar lines. The rotation of the mass donors appears to be similar to the rotation of the mass donors in Be/X-ray binaries. We suggest that X-ray/optical periodicity ~1 day deserves to be searched for

    Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    Get PDF
    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H\u3b1 emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (\ue2\u2030 30%) of H\u3b1 having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I\u3bd) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l >-90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in H\u3b1 at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2\u3c3 upper limit of 1.6% in the Perseus region
    corecore