14 research outputs found

    Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications

    Get PDF
    Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy

    Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for a high-mass Higgs boson H is performed in the H → WW → ℓνℓν and H → WW → ℓνqq decay channels using pp collision data corresponding to an integrated luminosity of 20.3 fb−¹ collected at √s = 8 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of a high-mass Higgs boson is found. Limits on σH × BR(H → WW) as a function of the Higgs boson mass mH are determined in three different scenarios: one in which the heavy Higgs boson has a narrow width compared to the experimental resolution, one for a width increasing with the boson mass and modeled by the complex-pole scheme following the same behavior as in the Standard Model, and one for intermediate widths. The upper range of the search is mH = 1500 GeV for the narrow-width scenario and mH = 1000 GeV for the other two scenarios. The lower edge of the search range is 200–300 GeV and depends on the analysis channel and search scenario. For each signal interpretation, individual and combined limits from the two WW decay channels are presented. At mH = 1500 GeV, the highest-mass point tested, σH × BR(H → WW) for a narrow-width Higgs boson is constrained to be less than 22 fb and 6.6 fb at 95% CL for the gluon fusion and vector-boson fusion production modes, respectively

    Free radical activation of monomethyl and dimethyl hydrazines in isolated hepatocytes and liver microsomes

    No full text
    Isolated hepatocytes and liver microsomes incubated with monomethyl-1,1 dimethyl- and 1,2 dimethyl-hydrazines produced free radical intermediates which were detected by ESR spectroscopy by using 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) as spin trapping agent. The spectral features of the spin adducts derived from all three hydrazine derivatives corresponded to the values reported for the methyl free radical adduct of 4-POBN. In the microsomal preparations inhibitors of the mixed function oxidase system and the destruction of cytochrome P450 by pretreating the rats with CoCl2 all decreased the free radical formation. Methimazole, an inhibitor of FAD-containing monoxygenase system, similarly decreased the activation of 1,1 dimethyl-hydrazine, but not that of monomethyl- and 1,2 dimethyl-hydrazines. The addition to liver microsomes of physiological concentrations of glutathione (GSH) lowered by approx. 80% the intensities of the ESR signals. Consistently, incubation of isolated hepatocytes with methyl-hydrazines decreased the intracellular GSH content, suggesting that GSH can effectively scavenge the methyl free radicals. The results obtained suggest that methyl free radicals could be the alkylating species responsible for the toxic and/or carcinogenic effect of methyl-hydrazines

    In vitro and in vivo evidence for the formation of methyl radical from procarbazine: a spin trapping study

    No full text
    Electron spin resonance (ESR) analysis combined with the use of 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) and dibromonitroso benzenesulfonic acid (DBNBS) as spin-trapping agents was used to characterize free radical generation during the metabolism of the anticancer agent procarbazine [N-isopropyl-a-(2-methylhydrazino)-p-toluamide hydrochloride]. The formation of free radical species, identified as methyl radicals, was observed during oxidation of procarbazine in rat liver microsomes and isolated hepatocytes in vitro, as well as in several organs following administration of the drug in vivo. A cytochrome P450-mediated reaction, involving P450IA and IIB isoenzymes, was responsible for the activation process. The metabolic pathway leading to free radical formation was characterized using various procarbazine metabolites and revealed strict analogies with previously published data on methane production from procarbazine. These results supported the identification of the trapped species as methyl free radical and suggested that C-oxidation of azoprocarbazine is the main source of radical intermediates derived from this anticancer drug
    corecore