35 research outputs found

    Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Get PDF
    Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i) the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii) the ecological changes generated by Bt-cotton landscapes in China, and (iii) the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality

    Application of Systematic Review Methodology to Food and Feed Safety Assessments to Support Decision Making

    Get PDF
    Systematic reviews are commonly used in human health research to provide overviews of existing evidence pertinent to clearly formulated specific questions, using pre-specified and standardised methods to identify and critically appraise relevant research, and to collect, report and analyse data from the studies that are included in the reviews. Formal systematic reviews have rarely been used in food and feed safety risk assessments and the existing systematic review methods in other disciplines may not be directly applicable in this field. This Guidance aims to assist the application of systematic reviews to food and feed safety risk assessments in support of decision making, by describing a framework for identifying the different types of question suitable for systematic review generated by the risk assessment process and for determining the need for systematic reviews when dealing with broad food and feed safety policy problems. The Guidance provides suggestions and examples for the conduct of eight key steps in the systematic review process (preparing a review, searching for studies, selecting studies for inclusion, collecting data from included studies, assessing the methodological quality of included studies, synthesising data from the studies, presenting data and results, and interpreting the results and drawing conclusions) for questions suitable for systematic reviews, taking into account issues that may be unique to food and feed safety. Due to its methodological rigor and its objective and transparent nature, systematic review methodology and its principles could provide additional value for answering well-formulated specific questions generated by the risk assessment process or other analytical frameworks in food and feed safety. Regular updates of this Guidance are foreseen in light of experience and new evidence both in food and feed safety and systematic review methodology

    Flowering Coriander (Coriandrum sativum) Strips Do Not Enhance Ecosystem Services in Azorean Orchards

    Get PDF
    ABSTRACT: Ecosystem services (ESs) and disservices (EDs) are routinely estimated from changes in service provider densities without measuring their actual levels. By using the sentinel approach (i.e., exposing a plant, seeds, and prey models in a standardized way), we tested how coriander (Coriandrum sativum) strips planted in mixed orchards on Terceira Island (Azores, Portugal) affected ESs/EDs via herbivory on lettuce plants, seed predation on wheat and weed seeds, and predation on artificial caterpillars. Vertebrates had more influence than invertebrates on ESs and EDs. Herbivory (ED) after 2 weeks was similar in the coriander and the control plots, while seed predation was higher in the control than in the coriander plots on both wheat grain (an ED: 30.8% vs. 15.3%) and weed seeds (an ES: 2.5% vs. 0.4%). Vertebrate predation (ES) rates after 48 h were significantly higher in the control (9%) than in the coriander plots (3%), while no difference was observed for invertebrate predation. Coriander strips did not support increased ES/reduced ED levels in this habitat. The sentinel approach is effective to quantitatively compare multiple ESs/EDs under different farming management strategies.info:eu-repo/semantics/publishedVersio

    Monitoring Arthropods in Azorean Agroecosystems : the project AGRO-ECOSERVICES

    Get PDF
    We provided an inventory of all arthropods recorded in four Azorean agroecosystems (citrus orchards, low and high elevation maize fields and vineyards) from Terceira Island. A total of 50412 specimens were collected, belonging to four classes, 20 orders, 81 families and 200 identified species of arthropods. A total of 127 species are considered introduced (n = 22646) and 69 native non-endemic (n = 24117). Four endemic species were recorded with very few specimens (n = 14) and 3635 specimens belong to unidentified taxa recorded only at genus or family level. Five species are new records for Terceira Island, with Lagria hirta (Linnaeus, 1758) (Coleoptera, Tenebrionidae) being also a new record for the Azores. This publication contributes to a better knowledge of the arthropods communities present in agro-ecosystems of Terceira Island and will serve as a baseline for future monitoring schemes targeting the long-term change in arthropod diversity and abundance.This work was financed by FEDER (European Regional Development Fund) in 85% and by Azorean Public funds by 15% through the Operational Program Azores 2020, under the project AGRO-ECOSERVICES (ACORES-01-0145-FEDER-000073). The Darwin-Core database was prepared within the scope of the project AZORESBIOPORTAL -PORBIOTA (ACORES-01-0145-FEDER-000072).info:eu-repo/semantics/publishedVersio

    Integrating adverse effect analysis into environmental risk assessment for exotic generalist arthropod biological control agents: a three-tiered framework

    Get PDF
    Environmental risk assessments (ERAs) are required before utilizing exotic arthropods for biological control (BC). Present ERAs focus on exposure analysis (host/prey range) and have resulted in approval of many specialist exotic biological control agents (BCA). In comparison to specialists, generalist arthropod BCAs (GABCAs) have been considered inherently risky and less used in classical biological control. To safely consider exotic GABCAs, an ERA must include methods for the analysis of potential effects. A panel of 47 experts from 14 countries discussed, in six online forums over 12 months, scientific criteria for an ERA for exotic GABCAs. Using four case studies, a three-tiered ERA comprising Scoping, Screening and Definitive Assessments was developed. The ERA is primarily based on expert consultation, with decision processes in each tier that lead to the approval of the petition or the subsequent tier. In the Scoping Assessment, likelihood of establishment (for augmentative BC), and potential effect(s) are qualitatively assessed. If risks are identified, the Screening Assessment is conducted, in which 19 categories of effects (adverse and beneficial) are quantified. If a risk exceeds the proposed risk threshold in any of these categories, the analysis moves to the Definitive Assessment to identify potential non-target species in the respective category(ies). When at least one potential non-target species is at significant risk, long-term and indirect ecosystem risks must be quantified with actual data or the petition for release can be dismissed or withdrawn. The proposed ERA should contribute to the development of safe pathways for the use of low risk GABCAs

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Writing and Publishing Scientific Papers

    No full text
    "GĂĄbor Lövei’s scientific communication course for students and scientists explores the intricacies involved in publishing primary scientific papers, and has been taught in more than twenty countries. Writing and Publishing Scientific Papers is the distillation of Lövei’s lecture notes and experience gathered over two decades; it is the coursebook many have been waiting for. The book’s three main sections correspond with the three main stages of a paper’s journey from idea to print: planning, writing, and publishing. Within the book’s chapters, complex questions such as ‘How to write the introduction?’ or ‘How to submit a manuscript?’ are broken down into smaller, more manageable problems that are then discussed in a straightforward, conversational manner, providing an easy and enjoyable reading experience. Writing and Publishing Scientific Papers stands out from its field by targeting scientists whose first language is not English. While also touching on matters of style and grammar, the book’s main goal is to advise on first principles of communication. This book is an excellent resource for any student or scientist wishing to learn more about the scientific publishing process and scientific communication. It will be especially useful to those coming from outside the English-speaking world and looking for a comprehensive guide for publishing their work in English.

    Writing and Publishing Scientific Papers

    Get PDF
    "GĂĄbor Lövei’s scientific communication course for students and scientists explores the intricacies involved in publishing primary scientific papers, and has been taught in more than twenty countries. Writing and Publishing Scientific Papers is the distillation of Lövei’s lecture notes and experience gathered over two decades; it is the coursebook many have been waiting for. The book’s three main sections correspond with the three main stages of a paper’s journey from idea to print: planning, writing, and publishing. Within the book’s chapters, complex questions such as ‘How to write the introduction?’ or ‘How to submit a manuscript?’ are broken down into smaller, more manageable problems that are then discussed in a straightforward, conversational manner, providing an easy and enjoyable reading experience. Writing and Publishing Scientific Papers stands out from its field by targeting scientists whose first language is not English. While also touching on matters of style and grammar, the book’s main goal is to advise on first principles of communication. This book is an excellent resource for any student or scientist wishing to learn more about the scientific publishing process and scientific communication. It will be especially useful to those coming from outside the English-speaking world and looking for a comprehensive guide for publishing their work in English.
    corecore