23 research outputs found

    Improving Data-Driven Infrastructure Degradation Forecast Skill with Stepwise Asset Condition Prediction Models

    Get PDF
    Organizations with large facility and infrastructure portfolios have used asset management databases for over ten years to collect and standardize asset condition data. Decision makers use these data to predict asset degradation and expected service life, enabling prioritized maintenance, repair, and renovation actions that reduce asset life-cycle costs and achieve organizational objectives. However, these asset condition forecasts are calculated using standardized, self-correcting distribution models that rely on poorly-fit, continuous functions. This research presents four stepwise asset condition forecast models that utilize historical asset inspection data to improve prediction accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-Intelligent Weighted Slope, and (4) Nearest Neighbor. Model performance was evaluated against BUILDER SMS, the industry-standard asset management database, using data for five roof types on 8549 facilities across 61 U.S. military bases within the United States. The stepwise Weighted Slope model more accurately predicted asset degradation 92% of the time, as compared to the industry standard’s continuous self-correcting prediction model. These results suggest that using historical condition data, alongside or in-place of manufacturer expected service life, may increase the accuracy of degradation and failure prediction models. Additionally, as data quantity increases over time, the models presented are expected to improve prediction skills. The resulting improvements in forecasting enable decision makers to manage facility assets more proactively and achieve better returns on facility investments. © 2022 by the authors

    Designing the selenium and bladder cancer trial (SELEBLAT), a phase lll randomized chemoprevention study with selenium on recurrence of bladder cancer in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Belgium, bladder cancer is the fifth most common cancer in males (5.2%) and the sixth most frequent cause of death from cancer in males (3.8%). Previous epidemiological studies have consistently reported that selenium concentrations were inversely associated with the risk of bladder cancer. This suggests that selenium may also be suitable for chemoprevention of recurrence.</p> <p>Method</p> <p>The SELEBLAT study opened in September 2009 and is still recruiting all patients with non-invasive transitional cell carcinoma of the bladder on TURB operation in 15 Belgian hospitals. Recruitment progress can be monitored live at <url>http://www.seleblat.org.</url> Patients are randomly assigned to selenium yeast (200 μg/day) supplementation for 3 years or matching placebo, in addition to standard care. The objective is to determine the effect of selenium on the recurrence of bladder cancer. Randomization is stratified by treatment centre. A computerized algorithm randomly assigns the patients to a treatment arm. All study personnel and participants are blinded to treatment assignment for the duration of the study.</p> <p>Design</p> <p>The SELEnium and BLAdder cancer Trial (SELEBLAT) is a phase III randomized, placebo-controlled, academic, double-blind superior trial.</p> <p>Discussion</p> <p>This is the first report on a selenium randomized trial in bladder cancer patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00729287">NCT00729287</a></p

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    National identity predicts public health support during a global pandemic

    Get PDF
    Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = −0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics.publishedVersio

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    National identity predicts public health support during a global pandemic (vol 13, 517, 2022) : National identity predicts public health support during a global pandemic (Nature Communications, (2022), 13, 1, (517), 10.1038/s41467-021-27668-9)

    Get PDF
    Publisher Copyright: © The Author(s) 2022.In this article the author name ‘Agustin Ibanez’ was incorrectly written as ‘Augustin Ibanez’. The original article has been corrected.Peer reviewe

    Data- Driven Asset Degradation Modeling: An Enterprise-wide Roof System Case Study

    Get PDF
    Organizations with large facility and infrastructure portfolios have used asset management databases for over ten years to collect and standardize asset condition data. Decision makers use this data to predict asset degradation and expected service life, enabling prioritized maintenance, repair, and renovation actions that reduce asset life-cycle costs and achieve organizational objectives. However, these asset condition forecasts are calculated using standardized, self-correcting distribution models that rely on continuous functions. This research presents four step wise asset condition forecast models that utilize historical asset inspection data to improve prediction accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-intelligent Weighted Slope, and (4) Nearest Neighbor. Model performance was evaluated against BUILDER SMS, the industry-standard asset management database, using data for five roof types on 8,549 facilities across 61 U.S. military bases within the Contiguous United States. The step wise Weighted-slope model predicted asset degradation more accurately than BUILDER SMS 92 of the time. These results suggest that using historical condition data, alongside or in-place of manufacturer expected service life, may increase degradation and failure prediction accuracy. Additionally, the developed models are expected to improve prediction skills as data quantity increases over time. These results are expected to enable decision makers to achieve more accurate construction management and infrastructure investment objectives

    Predicting Asset Degradation with Data-Driven Models

    No full text
    Asset management databases are widely employed to help close the maintenance/sustainment gap and to more proactively identify potential risks. However, current data models often use population averages to make predictions, which can overlook individual asset performance over its lifespan. Recent research at the Air Force Institute of Technology investigated using stepwise asset condition forecast models to develop better predictions

    Improving Data-Driven Infrastructure Degradation Forecast Skill with Stepwise Asset Condition Prediction Models

    No full text
    Organizations with large facility and infrastructure portfolios have used asset management databases for over ten years to collect and standardize asset condition data. Decision makers use these data to predict asset degradation and expected service life, enabling prioritized maintenance, repair, and renovation actions that reduce asset life-cycle costs and achieve organizational objectives. However, these asset condition forecasts are calculated using standardized, self-correcting distribution models that rely on poorly-fit, continuous functions. This research presents four stepwise asset condition forecast models that utilize historical asset inspection data to improve prediction accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-Intelligent Weighted Slope, and (4) Nearest Neighbor. Model performance was evaluated against BUILDER SMS, the industry-standard asset management database, using data for five roof types on 8549 facilities across 61 U.S. military bases within the United States. The stepwise Weighted Slope model more accurately predicted asset degradation 92% of the time, as compared to the industry standard&rsquo;s continuous self-correcting prediction model. These results suggest that using historical condition data, alongside or in-place of manufacturer expected service life, may increase the accuracy of degradation and failure prediction models. Additionally, as data quantity increases over time, the models presented are expected to improve prediction skills. The resulting improvements in forecasting enable decision makers to manage facility assets more proactively and achieve better returns on facility investments
    corecore