339 research outputs found

    Automatic Network Fingerprinting through Single-Node Motifs

    Get PDF
    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    TOPAZ1, a Novel Germ Cell-Specific Expressed Gene Conserved during Evolution across Vertebrates

    Get PDF
    BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH) approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons), respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ lin

    Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases

    Get PDF
    BACKGROUND: Anti-angiogenic therapy with bevacizumab (an anti-vascular endothelial growth factor (VEGF) antibody) predominantly targets immature blood vessels. Bevacizumab has shown a survival benefit in non-small cell lung carcinoma (NSCLC) and has recently been demonstrated to be safe in patients with brain metastases. However, it is not known whether bevacizumab is effective against brain metastases or whether metastases are representative of their primary in terms of VEGF expression, hypoxia, proliferation and vascular phenotype. The aim of this study was to evaluate these factors in a series of matched primary NSCLCs and brain metastases. METHODS AND RESULTS: Immunohistochemistry showed strong correlation of carbonic anhydrase 9 expression (a marker of hypoxia) in primary and secondary cancers (P=0.0002). However, the proliferation index, VEGF expression, microvessel density and the proportion of mature vessels were discordant between primary and secondary cancers. The mean proportion of mature vessels was 63.2% higher in the brain metastases than the primary tumours (P=0.004). Moreover, the vascular pattern of the primary tumour was not representative of the metastasis. CONCLUSIONS: Brain metastases have a significantly higher proportion of mature vasculature, suggesting that they may be refractory to anti-VEGF therapy. These findings may have implications for clinical trials and biomarker studies evaluating anti-angiogenic agents in brain metastases

    A MILI-independent piRNA biogenesis pathway empowers partial germline reprogramming.

    Get PDF
    In mice, the pathway involving PIWI and PIWI-interacting RNA (PIWI-piRNA) is essential to re-establish transposon silencing during male-germline reprogramming. The cytoplasmic PIWI protein MILI mediates piRNA-guided transposon RNA cleavage as well as piRNA amplification. MIWI2's binding to piRNA and its nuclear localization are proposed to be dependent upon MILI function. Here, we demonstrate the existence of a piRNA biogenesis pathway that sustains partial MIWI2 function and reprogramming activity in the absence of MILI

    Association between high-dose erythropoiesis-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-dose erythropoiesis-stimulating agents (ESA) for anemia of chronic kidney disease (CKD) have been associated with adverse clinical outcomes and do not always improve erythropoiesis. We hypothesized that high-dose ESA requirement would be associated with elevated inflammatory biomarkers, decreased adipokines, and increased circulating, endogenous soluble erythropoietin receptors (sEpoR).</p> <p>Methods</p> <p>A cross-sectional cohort of anemic 32 CKD participants receiving ESA were enrolled at a single center and cytokine profiles, adipokines, and sEpoR were compared between participants stratified by ESA dose requirement (usual-dose darbepoetin-α (< 1 μg/kg/week) and high-dose (≥1 μg/kg/week)).</p> <p>Results</p> <p>Baseline characteristics were similar between groups; however, hemoglobin was lower among participants on high-dose (1.4 μg/kg/week) vs usual-dose (0.5 μg/kg/week) ESA.</p> <p>In adjusted analyses, high-dose ESA was associated with an increased odds for elevations in c-reactive protein and interleukin-6 (p < 0.05 for both). There was no correlation between high-dose ESA and adipokines. Higher ESA dose correlated with higher levels of sEpoR (r<sub>s </sub>= 0.39, p = 0.03). In adjusted analyses, higher ESA dose (per μcg/kg/week) was associated with a 53% greater odds of sEpoR being above the median (p < 0.05).</p> <p>Conclusion</p> <p>High-dose ESA requirement among anemic CKD participants was associated with elevated inflammatory biomarkers and higher levels of circulating sEpoR, an inhibitor of erythropoiesis. Further research confirming these findings is warranted.</p> <p>Trial registration</p> <p>Clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00526747">NCT00526747</a></p

    Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities

    Full text link
    We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on a mode-gap photonic crystal cavities with light localization in an air mode with 0.02(lambda/n)3 modal volumes while preserving optical cavity Q up to 5 x 106. The mechanical mode is modeled to have fundamental resonance omega_m/2pi of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters.Comment: 12 pages, 7 figure

    DNA Demethylation and USF Regulate the Meiosis-Specific Expression of the Mouse Miwi

    Get PDF
    Miwi, a member of the Argonaute family, is required for initiating spermiogenesis; however, the mechanisms that regulate the expression of the Miwi gene remain unknown. By mutation analysis and transgenic models, we identified a 303 bp proximal promoter region of the mouse Miwi gene, which controls specific expression from midpachytene spermatocytes to round spermatids during meiosis. We characterized the binding sites of transcription factors NF-Y (Nuclear Factor Y) and USF (Upstream Stimulatory Factor) within the core promoter and found that both factors specifically bind to and activate the Miwi promoter. Methylation profiling of three CpG islands within the proximal promoter reveals a markedly inverse correlation between the methylation status of the CpG islands and germ cell type–specific expression of Miwi. CpG methylation at the USF–binding site within the E2 box in the promoter inhibits the binding of USF. Transgenic Miwi-EGFP and endogenous Miwi reveal a subcellular co-localization pattern in the germ cells of the Miwi-EGFP transgenic mouse. Furthermore, the DNA methylation profile of the Miwi promoter–driven transgene is consistent with that of the endogenous Miwi promoter, indicating that Miwi transgene is epigenetically modified through methylation in vivo to ensure its spatio-temporal expression. Our findings suggest that USF controls Miwi expression from midpachytene spermatocytes to round spermatids through methylation-mediated regulation. This work identifies an epigenetic regulation mechanism for the spatio-temporal expression of mouse Miwi during spermatogenesis
    corecore