456 research outputs found

    Hybrid superprism with low insertion losses and suppressed cross-talk

    Get PDF
    We demonstrate with the two-dimensional finite-difference time-domain method that an adiabatic transition in a superprism with an interface along the [1 [overline 2]] direction enhances the transmission through the superprism to more than 90% (–0.5 dB) over the wavelength range 1.47–1.68 µm, including the telecommunication C and L bands. We also show that diffraction governed by a quasinegative index of refraction inside the superprism can be used to obtain nearly transform-limited beam widths at the output of the superprism. The reduction of the beam width at the output suppresses cross-talk and greatly enhances the achievable frequency resolution of the superprism

    All-Optical Modulation in a Silicon Waveguide Based on a Single-Photon Process

    Get PDF
    All-optical, low-power modulation is a major goal in photonics. Because of their high mode-field concentration and ease of manufacturing, nanoscale silicon waveguides offer an intriguing platform for photonics. So far, all-optical modulators built with silicon photonic circuits have relied on either two-photon absorption or the Kerr effect. Both effects are weak in silicon, and require extremely high (~5 W) peak optical power levels to achieve modulation. Here, we describe an all-optical Mach-Zehnder modulator based on a single-photon absorption (SPA) process, fabricated entirely in silicon. Our SPA modulator is based on a process by which a single photon at 1.55 mum is absorbed and an apparently free-carrier-mediated process causes an index shift in silicon, even though the photon energy does not exceed that of silicon's bandgap. We demonstrate all-optical modulation with a gate response of 1deg/mW at 0.5 Gb/s. This is over an order of magnitude more responsive than typical previously demonstrated devices. Even without resonant enhancement, further engineering may enable all optical modulation with less than 10 mW of gate power required for complete extinction, and speeds of 5 Gb/s or higher

    Photodetection in silicon beyond the band edge with surface states

    Get PDF
    Silicon is an extremely attractive material platform for integrated optics at telecommunications wavelengths, particularly for integration with CMOS circuits. Developing detectors and electrically pumped lasers at telecom wavelengths are the two main technological hurdles before silicon can become a comprehensive platform for integrated optics. We report on the generation of free carriers in unimplanted SOI ridge waveguides, which we attribute to surface state absorption. By electrically contacting the waveguides, a photodetector with a responsivity of 36 mA/W and quantum efficiency of 2.8% is demonstrated. The photoconductive effect is shown to have minimal falloff at speeds of up to 60 Mhz

    High-Q optical resonators in silicon-on-insulator-based slot waveguides

    Get PDF
    This letter describes the design, fabrication and characterization of high-Q oval resonators based on slot waveguide geometries in thin silicon-on-insulator material. Optical quality factors of up to 27 000 were measured in such filters, and we estimate losses of –10 dB/cm in the slotted waveguides on the basis of our resonator measurements. Such waveguides enable the concentration of light to very high optical fields within nanoscale dimensions, and show promise for the confinement of light in low-index material with potential applications for optical modulation, nonlinear optics and optical sensing

    High-Q ring resonators in thin silicon-on-insulator

    Get PDF
    We have fabricated high-Q microrings from thin silicon-on-insulater SOI layers and measured Q values of 45 000 in these rings, which were then improved to 57 000 by adding a PMMA cladding. The optimal waveguide designs were calculated, and the waveguide losses were analyzed. These high-Q resonators are expected to lead to interesting devices for telecommunication filters and sources as well as optical refractive index sensing

    Integrated plasmon and dielectric waveguides

    Get PDF
    We have designed, fabricated and characterized surface plasmon waveguides for near infrared light in the telecommunications spectrum. These waveguides exhibit losses of -1.2dB/μm and can guide light around 0.5 μm bends. Light can also be efficiently coupled between more conventional silicon waveguides and these plasmon waveguides with compact couplers, and we demonstrate that surface plasmon optical devices can be constructed by using planar circuit fabrication techniques. The large optical field enhancements of metallic surface plasmon devices are expected to lead to a new class of plasmonic optical devices, which will take advantage of the large field enhancements at the surfaces of the plasmon waveguides for nonlinear or sensing functionality, while utilizing the low losses available in silicon waveguides to move light longer distances on chip

    Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides

    Get PDF
    We describe the design of a silicon-based source for radiation in the 0.5-14 THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation

    Silicon Waveguides and Ring Resonators at 5.5 {\mu}m

    Full text link
    We demonstrate low loss ridge waveguides and the first ring resonators for the mid-infrared, for wavelengths ranging from 5.4 to 5.6 {\mu}m. Structures were fabricated using electron-beam lithography on the silicon-on-sapphire material system. Waveguide losses of 4.0 +/- 0.7 dB/cm are achieved, as well as Q-values of 3.0 k.Comment: 4 pages, 4 figures, includes supplemental material

    Segmented waveguides in thin silicon-on-insulator

    Get PDF
    We have developed new silicon-on-insulator waveguide designs for simultaneously achieving both low-loss optical confinement and electrical contacts, and we present a design methodology based on calculating the Bloch modes of such segmented waveguides. With this formalism, waveguides are designed in a single thin layer of silicon-on-insulator to achieve both optical confinement and minimal insertion loss. Waveguides were also fabricated and tested, and the measured data were found to closely agree with theoretical predictions, demonstrating input insertion loss and propagation loss better than 0.1 dB and -16 dB/cm, respectively
    corecore