467 research outputs found

    Spatially-entangled Photon-pairs Generation Using Partial Spatially Coherent Pump Beam

    Full text link
    We demonstrate experimental generation of spatially-entangled photon-pairs by spontaneous parametric down conversion (SPDC) using a partial spatially coherent pump beam. By varying the spatial coherence of the pump, we show its influence on the downconverted photon's spatial correlations and on their degree of entanglement, in excellent agreement with theory. We then exploit this property to produce pairs of photons with a specific degree of entanglement by tailoring of the pump coherence length. This work thus unravels the fundamental transfer of coherence occuring in SPDC processes, and provides a simple experimental scheme to generate photon-pairs with a well-defined degree of spatial entanglement, which may be useful for quantum communication and information processingComment: Main: 5 pages and 3 Figures ; Supplementary: 5 pages and 3 Figure

    Spectral Method for Multiplexed Phase Retrieval and Application in Optical Imaging in Complex Media

    Full text link
    We introduce a generalized version of phase retrieval called multiplexed phase retrieval. We want to recover the phase of amplitude-only measurements from linear combinations of them. This corresponds to the case in which multiple incoherent sources are sampled jointly, and one would like to recover their individual contributions. We show that a recent spectral method developed for phase retrieval can be generalized to this setting, and that its performance follows a phase transition behavior. We apply this new technique to light focusing at depth in a complex medium. Experimentally, although we only have access to the sum of the intensities on multiple targets, we are able to separately focus on each ones, thus opening potential applications in deep fluorescence imaging and light deliver

    Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation

    Get PDF
    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal mesoscopic model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle and, in particular, we identify its universal characteristic timescale levering on the universal properties of speckles. This theoretical insight permits us to identify several interesting unexplored phenomena and applications. As an example of the former, we show the possibility of tuning anomalous diffusion continuously from subdiffusion to superdiffusion. As an example of the latter, we show the possibility of harnessing the speckle memory effect to perform some basic deterministic optical manipulation tasks such as guiding and sorting by employing random speckles, which might broaden the perspectives of optical manipulation for real-life applications by providing a simple and cost-effective technique

    Robust phase retrieval with the swept approximate message passing (prSAMP) algorithm

    Full text link
    In phase retrieval, the goal is to recover a complex signal from the magnitude of its linear measurements. While many well-known algorithms guarantee deterministic recovery of the unknown signal using i.i.d. random measurement matrices, they suffer serious convergence issues some ill-conditioned matrices. As an example, this happens in optical imagers using binary intensity-only spatial light modulators to shape the input wavefront. The problem of ill-conditioned measurement matrices has also been a topic of interest for compressed sensing researchers during the past decade. In this paper, using recent advances in generic compressed sensing, we propose a new phase retrieval algorithm that well-adopts for both Gaussian i.i.d. and binary matrices using both sparse and dense input signals. This algorithm is also robust to the strong noise levels found in some imaging applications

    Temporal recompression through a scattering medium via a broadband transmission matrix

    Full text link
    The transmission matrix is a unique tool to control light through a scattering medium. A monochromatic transmission matrix does not allow temporal control of broadband light. Conversely, measuring multiple transmission matrices with spectral resolution allows fine temporal control when a pulse is temporally broadened upon multiple scattering, but requires very long measurement time. Here, we show that a single linear operator, measured for a broadband pulse with a co-propagating reference, naturally allows for spatial focusing, and interestingly generates a two-fold temporal recompression at the focus, compared with the natural temporal broadening. This is particularly relevant for non-linear imaging techniques in biological tissues.Comment: 4 pages, 3 figure

    Adaptive pumping for spectral control of random lasers

    Full text link
    A laser is not necessarily a sophisticated device: Pumping energy into an amplifying medium randomly filled with scatterers, a powder for instance, makes a perfect "random laser." In such a laser, the absence of mirrors greatly simplifies laser design, but control over emission directionality or frequency tunability is lost, seriously hindering prospects for this otherwise simple laser. Lately, we proposed a novel approach to harness random lasers, inspired by spatial shaping methods recently employed for coherent light control in complex media. Here, we experimentally implement this method in an optofluidic random laser where scattering is weak and modes extend spatially and strongly overlap, making individual selection a priori impossible. We show that control over laser emission can indeed be regained even in this extreme case by actively shaping the spatial profile of the optical pump. This unique degree of freedom, which has never been exploited, allows selection of any desired wavelength and shaping of lasing modes, without prior knowledge of their spatial distribution. Mode selection is achieved with spectral selectivity down to 0.06nm and more than 10dB side-lobe rejection. This experimental method paves the way towards fully tunable and controlled random lasers and can be transferred to other class of lasers.Comment: 23 pages, 7 figure
    corecore