37 research outputs found

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Queues with Lévy input and hysteretic control

    Get PDF
    We consider a (doubly) reflected Lévy process where the Lévy exponent is controlled by a hysteretic policy consisting of two stages. In each stage there is typically a different service speed, drift parameter, or arrival rate. We determine the steady-state performance, both for systems with finite and infinite capacity. Thereby, we unify and extend many existing results in the literature, focusing on the special cases of M/G/1 queues and Brownian motion. © The Author(s) 2009

    A systematic review of controlled trials on visual stress using Intuitive Overlays or the Intuitive Colorimeter

    Get PDF
    Claims that coloured filters aid reading date back 200 years and remain controversial. Some claims, for example, that more than 10% of the general population and 50% of people with dyslexia would benefit from coloured filters lack sound evidence and face validity. Publications with such claims typically cite research using methods that have not been described in the scientific literature and lack a sound aetiological framework. Notwithstanding these criticisms, some researchers have used more rigorous selection criteria and methods of prescribing coloured filters that were developed at a UK Medical Research Council unit and which have been fully described in the scientific literature. We review this research and disconfirm many of the more extreme claims surrounding this topic. This literature indicates that a minority subset of dyslexics (circa 20%) may have a condition described as visual stress which most likely results from a hyperexcitability of the visual cortex. Visual stress is characterised by symptoms of visual perceptual distortions, headaches, and eyestrain when viewing repetitive patterns, including lines of text. This review indicates that visual stress is distinct from, although sometimes co-occurs with, dyslexia. Individually prescribed coloured filters have been shown to improve reading performance in people with visual stress, but are unlikely to influence the phonological and memory deficits associated with dyslexia and therefore are not a treatment for dyslexia. This review concludes that larger and rigorous randomised controlled trials of interventions for visual stress are required. Improvements in the diagnosis of the condition are also a priority

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    Three-axis Attitude Control with Two Reaction Wheels and Magnetic Torquer Bars

    No full text

    The Impact of Interpixel Capacitance in CMOS Detectors on PSF Shapes and Implications for WFIRST

    Get PDF
    Unlike optical CCDs, near-infrared detectors, which are based on CMOS hybrid readout technology, typically suffer from electrical crosstalk between the pixels. The interpixel capacitance (IPC) responsible for the crosstalk affects the point-spread function (PSF) of the telescope, increasing the size and modifying the shape of all objects in the images while correlating the Poisson noise. Upcoming weak lensing surveys that use these detectors, such as WFIRST, place stringent requirements on the PSF size and shape (and the level at which these are known), which in turn must be translated into requirements on IPC. To facilitate this process, we present a first study of the effect of IPC on WFIRST PSF sizes and shapes. Realistic PSFs are forward-simulated from physical principles for each WFIRST bandpass. We explore how the PSF size and shape depends on the range of IPC coupling with pixels that are connected along an edge or corner; for the expected level of IPC in WFIRST, IPC increases the PSF sizes by ~5%. We present a linear fitting formula that describes the uncertainty in the PSF size or shape due to uncertainty in the IPC, which could arise for example due to unknown time evolution of IPC as the detectors age or due to spatial variation of IPC across the detector. We also study of the effect of a small anisotropy in the IPC, which further modifies the PSF shapes. Our results are a first, critical step in determining the hardware and characterization requirements for the detectors used in the WFIRST survey
    corecore