109 research outputs found

    Discovery of a kleptoplastic 'dinotom' dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids

    Get PDF
    A monophyletic group of dinoflagellates, called ‘dinotoms’, are known to possess evolutionarily intermediate plastids derived from diatoms. The diatoms maintain their nuclei, mitochondria, and the endoplasmic reticulum in addition with their plastids, while it has been observed that the host dinoflagellates retain the diatoms permanently by controlling diatom karyokinesis. Previously, we showed that dinotoms have repeatedly replaced their diatoms. Here, we show the process of replacements is at two different evolutionary stages in two closely related dinotoms, Durinskia capensis and D. kwazulunatalensis. We clarify that D. capensis is a kleptoplastic protist keeping its diatoms temporarily, only for two months. On the other hand, D. kwazulunatalensis is able to keep several diatoms permanently and exhibits unique dynamics to maintain the diatom nuclei: the nuclei change their morphologies into a complex string-shape alongside the plastids during interphase and these string-shaped nuclei then condense into multiple round nuclei when the host divides. These dynamics have been observed in other dinotoms that possess permanent diatoms, while they have never been observed in any other eukaryotes. We suggest that the establishment of this unique mechanism might be a critical step for dinotoms to be able to convert kleptoplastids into permanent plastids.info:eu-repo/semantics/publishedVersio

    Blasticidin-S deaminase, a new selection marker for genetic transformation of the diatom Phaeodactylum tricornutum

    Get PDF
    Most genetic transformation protocols for the model diatom Phaeodactylum tricornutum rely on one of two available antibiotics as selection markers: Zeocin (a formulation of phleomycin D1) or nourseothricin. This limits the number of possible consecutive genetic transformations that can be performed. In order to expand the biotechnological possibilities for P. tricornutum, we searched for additional antibiotics and corresponding resistance genes that might be suitable for use with this diatom. Among the three different antibiotics tested in this study, blasticidin-S and tunicamycin turned out to be lethal to wild-type cells at low concentrations, while voriconazole had no detectable effect on P. tricornutum. Testing the respective resistance genes, we found that the blasticidin-S deaminase gene (bsr) effectively conferred resistance against blasticidin-S to P. tricornutum. Furthermore, we could show that expression of bsr did not lead to cross-resistances against Zeocin or nourseothricin, and that genetically transformed cell lines with resistance against Zeocin or nourseothricin were not resistant against blasticidin-S. In a proof of concept, we also successfully generated double resistant (against blasticidin-S and nourseothricin) P. tricornutum cell lines by co-delivering the bsr vector with a vector conferring nourseothricin resistance to wild-type cells

    Influence of the algal microbiome on biofouling during industrial cultivation of Nannochloropsis sp. in closed photobioreactors

    Get PDF
    Industrial cultivation of microalgae is becoming increasingly important, yet the process is still hampered by many factors, including contamination and biofouling of the algal reactors. We characterized a subset of microorganisms occurring in the broth and different biofilm stages of industrial scale photobioreactors applied for the cultivation of Nannochloropsis sp. A total of 69 bacterial strains were isolated, belonging to at least 24 different species. In addition, a green microalga was isolated and identified as Chlamydomonas hedleyi. The effect of C. hedleyi and 24 of the bacterial isolates on the productivity of Nannochloropsis was evaluated through growth and biofilm assays. C. hedleyi was shown to reduce growth and induce biofilm formation in Nannochloropsis. These effects were however indirect as they could be attributed to the bacteria associated to C. hedleyi and not C. hedleyi itself. Although most bacterial strains reported no effect, several were able to induce biofilm formation

    Prey preference in a kleptoplastic dinoflagellate is linked to photosynthetic performance

    Get PDF
    Dinoflagellates of the family Kryptoperidiniaceae, known as “dinotoms”, possess diatom-derived endosymbionts and contain individuals at three successive evolutionary stages: a transiently maintained kleptoplastic stage; a stage containing multiple permanently maintained diatom endosymbionts; and a further permanent stage containing a single diatom endosymbiont. Kleptoplastic dinotoms were discovered only recently, in Durinskia capensis; until now it has not been investigated kleptoplastic behavior and the metabolic and genetic integration of host and prey. Here, we show D. capensis is able to use various diatom species as kleptoplastids and exhibits different photosynthetic capacities depending on the diatom species. This is in contrast with the prey diatoms in their free-living stage, as there are no differences in their photosynthetic capacities. Complete photosynthesis including both the light reactions and the Calvin cycle remain active only when D. capensis feeds on its habitual associate, the “essential” diatom Nitzschia captiva. The organelles of another edible diatom, N. inconspicua, are preserved intact after ingestion by D. capensis and expresses the psbC gene of the photosynthetic light reaction, while RuBisCO gene expression is lost. Our results indicate that edible but non-essential, “supplemental” diatoms are used by D. capensis for producing ATP and NADPH, but not for carbon fixation. D. capensis has established a species-specifically designed metabolic system allowing carbon fixation to be performed only by its essential diatoms. The ability of D. capensis to ingest supplemental diatoms as kleptoplastids may be a flexible ecological strategy, to use these diatoms as “emergency supplies” while no essential diatoms are available.Open Access funding enabled and organized by Projekt DEAL.We are grateful to Dr Benjamin Bailleul for discussing the photoactivity possibility of N. inconspicua, and to Prof Dieter Spiteller and Dr Adrien Lapointe for suggesting the feeding experiment of D. capensis with four selected diatoms. We also thank Dr Martin Stöckl, from the Bioimaging Centre at University of Konstanz, for technical support of the CLSM. Our thanks also go to Ms Selina Pucher and Mr Alexander H. Fürst for discussing the RT-qPCR data analyses and evaluation, and to Mr Niccolo Mosesso for discussing the TEM protocol improvement. This research was supported by the Bridging Stipend of University of Konstanz (No.638/20, granted to NY), the DFG Research Grant (No. YA 577/2-1, granted to NY), and the Symbiosis Model Systems Award (No. GBMF9360, granted to NY, RT, DGM, PGK) of the Gordon and Betty Moore Foundation. The CERCA Programme of Generalitat of Catalonia is also acknowledged. The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division.info:eu-repo/semantics/publishedVersio

    AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum)

    Get PDF
    Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms

    Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms

    Get PDF
    Diatoms and other chlorophyll-c containing, or chromalveolate, algae are among the most productive and diverse phytoplankton in the ocean. Evolutionarily, chlorophyll-c algae are linked through common, although not necessarily monophyletic, acquisition of plastid endosymbionts of red as well as most likely green algal origin. There is also strong evidence for a relatively high level of lineage-specific bacterial gene acquisition within chromalveolates. Therefore, analyses of gene content and derivation in chromalveolate taxa have indicated particularly diverse origins of their overall gene repertoire. As a single group of functionally related enzymes spanning two distinct gene families, fructose 1,6-bisphosphate aldolases (FBAs) illustrate the influence on core biochemical pathways of specific evolutionary associations among diatoms and other chromalveolates with various plastid-bearing and bacterial endosymbionts. Protein localization and activity, gene expression, and phylogenetic analyses indicate that the pennate diatom Phaeodactylum tricornutum contains five FBA genes with very little overall functional overlap. Three P. tricornutum FBAs, one class I and two class II, are plastid localized, and each appears to have a distinct evolutionary origin as well as function. Class I plastid FBA appears to have been acquired by chromalveolates from a red algal endosymbiont, whereas one copy of class II plastid FBA is likely to have originated from an ancient green algal endosymbiont. The other copy appears to be the result of a chromalveolate-specific gene duplication. Plastid FBA I and chromalveolate-specific class II plastid FBA are localized in the pyrenoid region of the chloroplast where they are associated with β-carbonic anhydrase, which is known to play a significant role in regulation of the diatom carbon concentrating mechanism. The two pyrenoid-associated FBAs are distinguished by contrasting gene expression profiles under nutrient limiting compared with optimal CO2 fixation conditions, suggestive of a distinct specialized function for each. Cytosolically localized FBAs in P. tricornutum likely play a role in glycolysis and cytoskeleton function and seem to have originated from the stramenopile host cell and from diatom-specific bacterial gene transfer, respectively

    Plastid thylakoid architecture optimizes photosynthesis in diatoms

    Get PDF
    Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.ISSN:2041-172

    Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Get PDF
    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms

    Evolutionary genomics of a cold-adapted diatom: Fragilariopsis cylindrus

    Get PDF
    The Southern Ocean houses a diverse and productive community of organisms1, 2. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice3, 4, 5, 6, 7. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus8, 9, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean
    corecore