2,049 research outputs found

    Laguerre and Hermite soliton clusters in nonlocal nonlinear media

    No full text
    We introduce novel classes of higher-order spatial optical solitons in analogy with Laguerre-Gaussian and Hermite-Gaussian linear eigenmodes. We reveal that stable higher-order optical solitons can exist in nonlocal nonlinear media in the various forms of soliton necklaces and soliton matrices. Modulational instability can lead to nontrivial transformations between energetically close solitons with different symmetries through the intermediate states resembling generalized Hermite-Laguerre-Gaussian modes

    SPYGLASS. III. The Fornax-Horologium Association and its Traceback History within the Austral Complex

    Full text link
    The study of young associations is essential for building a complete record of local star formation processes. The Fornax-Horologium association (FH), including the χ1\chi^1 Fornacis cluster, represents one of the nearest young stellar populations to the Sun. This association has recently been linked to the Tuc-Hor, Carina, and Columba associations, building an extensive "Austral Complex" almost entirely within 150 pc. Using Gaia astrometry and photometry in addition to new spectroscopic observations, we perform the deepest survey of FH to date, identifying over 300 candidate members, nearly doubling the known population. By combining this sample with literature surveys of the other constituent populations, we produce a contiguous stellar population covering the entire Austral Complex, allowing the definitions of sub-populations to be re-assessed along with connections to external populations. This analysis recovers new definitions for FH, Tuc-Hor, Columba, and Carina, while also revealing a connection between the Austral complex and the Sco-Cen-affiliated Platais 8 cluster. This suggests that the Austral complex may be just a small component of a much larger and more diverse star formation event. Computing ages and tracing stellar populations back to formation reveals two distinct nodes of cospatial and continuous formation in the Austral Complex, one containing Tuc-Hor, and the other containing FH, Carina, and Columba. This mirrors recent work showing similar structure elsewhere, suggesting that these nodes, which only emerge through the use of traceback, may represent the clearest discrete unit of local star formation, and a key building block needed to reconstruct larger star-forming events.Comment: Accepted to ApJ; 29 pages, 10 figures, 5 tables in two-column AASTEX63 forma

    SPYGLASS. II. The Multi-Generational and Multi-Origin Star Formation History of Cepheus Far North

    Full text link
    Young stellar populations provide a record of past star formation, and by establishing their members' dynamics and ages, it is possible to reconstruct the full history of star formation events. Gaia has greatly expanded the number of accessible stellar populations, with one of the most notable recently-discovered associations being Cepheus Far North (CFN), a population containing hundreds of members spanning over 100 pc. With its proximity (d ≲\lesssim 200 pc), apparent substructure, and relatively small population, CFN represents a manageable population to study in depth, with enough evidence of internal complexity to produce a compelling star formation story. Using Gaia astrometry and photometry combined with additional spectroscopic observations, we identify over 500 candidate CFN members spread across 7 subgroups. Combining ages from isochrones, asteroseismology, dynamics, and lithium depletion, we produce well-constrained ages for all seven subgroups, revealing a largely continuous 10 Myr star formation history in the association. By tracing back the present-day populations to the time of their formation, we identify two spatially and dynamically distinct nodes in which stars form, one associated with β\beta Cephei which shows mostly co-spatial formation, and one associated with EE Draconis with a more dispersed star formation history. This detailed view of star formation demonstrates the complexity of the star formation process, even in the smallest of regions.Comment: Accepted to ApJ; 34 pages, 15 figures, 6 tables in two-column AASTEX63 forma

    Close companions around young stars

    Get PDF
    Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We present an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of ∼\sim0.05--1.5 \msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for q0.95q0.95. The period distribution is consistent with what has been observed in close binaries (<10<10 AU) in the evolved populations. Three systems are found to have q∼q\sim0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at Σ∗∼30\Sigma_*\sim30 stars/pc−2^{-2}, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of ∼\sim2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower qq.Comment: 25 pages, 20 figures. Accepted to A

    A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation

    Full text link
    Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass-radius-insolation distribution. Here we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder (HPF) spectra show a detection of up to 10% absorption depth of the 10833 Angstrom Helium triplet. The 13.8 hours of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess Helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar -- and not planetary -- rest frame, consistent with the Doppler velocity structure seen in the Helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/night- side asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ 1D Parker wind models to estimate the mass loss rate, finding values on the order of 2×10132\times10^{13} g/s, with large uncertainties owing to the unknown XUV flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: Ohmic dissipation and XUV irradiation, slightly favoring the latter.Comment: Submitted to The Astronomical Journa

    TESS Hunt for Young and Maturing Exoplanets (THYME) VII : Membership, rotation, and lithium in the young cluster Group-X and a new young exoplanet

    Full text link
    The public, all-sky surveys Gaia and TESS provide the ability to identify new young associations and determine their ages. These associations enable study of planetary evolution by providing new opportunities to discover young exoplanets. A young association was recently identified by Tang et al. and F{\"u}rnkranz et al. using astrometry from Gaia (called "Group-X" by the former). In this work, we investigate the age and membership of this association; and we validate the exoplanet TOI 2048 b, which was identified to transit a young, late G dwarf in Group-X using photometry from TESS. We first identified new candidate members of Group-X using Gaia EDR3 data. To infer the age of the association, we measured rotation periods for candidate members using TESS data. The clear color--period sequence indicates that the association is the same age as the 300Âą50300\pm50 Myr-old NGC 3532. We obtained optical spectra for candidate members that show lithium absorption consistent with this young age. Further, we serendipitously identify a new, small association nearby Group-X, which we call MELANGE-2. Lastly, we statistically validate TOI 2048 b, which is 2.6Âą0.22.6\pm0.2 \rearth\ radius planet on a 13.8-day orbit around its 300 Myr-old host star.Comment: Revised to correct error in reported planet radius (original: 2.1 Earth radii, corrected: 2.6 Earth radii) and units for planetary radius ratio entries in Table 8. All data tables available open-access with the AJ articl

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    • …
    corecore