778 research outputs found

    Search for CP violation in D+→K−K+π+D^{+} \to K^{-}K^{+}\pi^{+} decays

    Get PDF
    A model-independent search for direct CP violation in the Cabibbo suppressed decay D+→K−K+π+D^+ \to K^- K^+\pi^+ in a sample of approximately 370,000 decays is carried out. The data were collected by the LHCb experiment in 2010 and correspond to an integrated luminosity of 35 pb−1^{-1}. The normalized Dalitz plot distributions for D+D^+ and D−D^- are compared using four different binning schemes that are sensitive to different manifestations of CP violation. No evidence for CP asymmetry is found.Comment: 13 pages, 8 figures, submitted to Phys. Rev.

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− ÎŒ + ΜΌ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Measurement of the CKM angle Îł from a combination of B±→Dh± analyses

    Get PDF
    A combination of three LHCb measurements of the CKM angle Îł is presented. The decays B±→D K± and B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− ïŹnal states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-ïŹt value of Îł =72.0◩ is found, and conïŹdence intervals are set Îł ∈ [56.4,86.7]◩ at 68% CL, Îł ∈ [42.6,99.6]◩ at 95% CL. The best-ïŹt value of Îł found from a combination of results from B±→Dπ± decays alone, is Îł =18.9◩, and the conïŹdence intervals Îł ∈ [7.4,99.2]◩ âˆȘ [167.9,176.4]◩ at 68% CL are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ± decays gives a best-ïŹt value of Îł =72.6◩ and the conïŹdence intervals Îł ∈ [55.4,82.3]◩ at 68% CL, Îł ∈ [40.2,92.7]◩ at 95% CL are set. All values are expressed modulo 180◩, and are obtained taking into account the effect of D0–D0 mixing

    Measurement of the CP-violating phase phi_s in the decay Bs->J/psi phi

    Get PDF
    We present a measurement of the time-dependent CP-violating asymmetry in B_s -> J/psi phi decays, using data collected with the LHCb detector at the LHC. The decay time distribution of B_s -> J/psi phi is characterized by the decay widths Gamma_H and Gamma_L of the heavy and light mass eigenstates of the B_s-B_s-bar system and by a CP-violating phase phi_s. In a sample of about 8500 B_s -> J/psi phi events isolated from 0.37 fb^-1 of pp collisions at sqrt(s)=7 TeV we measure phi_s = 0.15 +/- 0.18 (stat) +/- 0.06 (syst) rad. We also find an average B_s decay width Gamma_s == (Gamma_L + Gamma_H)/2 = 0.657 +/- 0.009 (stat) +/- 0.008 (syst) ps^-1 and a decay width difference Delta Gamma_s == Gamma_L - Gamma_H} = 0.123 +/- 0.029 (stat) +/- 0.011 (syst) ps^-1. Our measurement is insensitive to the transformation (phi_s,DeltaGamma_s --> pi - phi_s, - Delta Gamma_s.Comment: 9 pages, 3 figure

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Observation of associated production of a ZZ boson with a DD meson in the~forward region

    Get PDF
    A search for associated production of a ZZ boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of 1.0 fb−‘1.0\,\mathrm{fb}^{-`} of proton--proton collisions at a centre-of-mass energy of 7\,TeV, collected by the LHCb experiment. %% Seven candidate events for associated production of a ZZ boson with a D0D^0 meson and four candidate events for a ZZ boson with a D+D^+ meson are observed with a combined significance of 5.1standard deviations. The production cross-sections in the forward region are measured to be σZ→Ό+ÎŒâˆ’â€‰âŁ,D0=2.50±1.12±0.22pb\sigma_{Z\rightarrow\mu^+\mu^-\!,D^0} = 2.50\pm1.12\pm0.22pb σZ→Ό+ÎŒâˆ’â€‰âŁ,D+=0.44±0.23±0.03pb,\sigma_{Z\rightarrow\mu^+\mu^-\!,D^+} = 0.44\pm0.23\pm0.03pb, where the first uncertainty is statistical and the second systematic.Comment: 18 pages, 2 figure

    Measurements of the branching fractions of the decays B°s → D∓s K± and B°s → DÂŻsπ+

    Get PDF
    The decay mode B°s → D∓s K± allows for one of the theoretically cleanest measurements of the CKM angle Îł through the study of time-dependent CP violation. This paper reports a measurement of its branching fraction relative to the Cabibbo-favoured mode B°s → DÂŻsπ+ based on a data sample corresponding to 0.37 fbÂŻÂč of proton-proton collisions at √s = 7TeV collected in 2011 with the LHCb detector. In addition, the ratio of B meson production fractions fs/fd, determined from semileptonic decays, together with the known branching fraction of the control channel B°s → DÂŻsπ+ is used to perform an absolute measurement of the branching fractions: B(B°s → DÂŻsπ+) = (2.95 ± 0.05 ± 0.17 -0.22 +0.18) × 10ÂŻÂł ; B(B°s → D∓s K±) = (1.90 ± 0.12 ± 0.13 -0.14 +0.12) × 10ÂŻ4 ; where the first uncertainty is statistical, the second the experimental systematic uncertainty, and the third the uncertainty due to f s/f
    • 

    corecore