449 research outputs found

    A Long-term Forecast of Shallow Seismicity Based on the Global Strain Rate Map

    Full text link

    An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020

    Get PDF
    We developed a high-quality global integrated water vapour (IWV) dataset from 12 552 ground-based global positioning system (GPS) stations in 2020. It consists of 5 min GPS IWV estimates with a total number of 1 093 591 492 data points. The completeness rates of the IWV estimates are higher than 95 % at 7253 (58 %) stations. The dataset is an enhanced version of the existing operational GPS IWV dataset provided by the Nevada Geodetic Laboratory (NGL). The enhancement is reached by employing accurate meteorological information from the fifth generation of European ReAnalysis (ERA5) for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. A dedicated data screening algorithm is also implemented. The GPS IWV dataset has a good agreement with in situ radiosonde observations at 182 collocated stations worldwide. The IWV biases are within ±3.0 kg m−2 with a mean absolute bias (MAB) value of 0.69 kg m−2. The standard deviations (SD) of IWV differences are no larger than 3.4 kg m−2. In addition, the enhanced IWV product shows substantial improvements compared to NGL\u27s operational version, and it is thus recommended for high-accuracy applications, such as research of extreme weather events and diurnal variations of IWV and intercomparisons with other IWV retrieval techniques. Taking the radiosonde-derived IWV as reference, the MAB and SD of IWV differences are reduced by 19.5 % and 6.2 % on average, respectively. The number of unrealistic negative GPS IWV estimates is also substantially reduced by 92.4 % owing to the accurate zenith hydrostatic delay (ZHD) derived by ERA5. The dataset is available at https://doi.org/10.5281/zenodo.6973528 (Yuan et al., 2022)

    Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05W05, doi:10.1029/2009GC002970.Although an average westward rotation of the Earth's lithosphere is indicated by global analyses of surface features tied to the deep mantle (e.g., hot spot tracks), the rate of lithospheric drift is uncertain despite its importance to global geodynamics. We use a global viscous flow model to predict asthenospheric anisotropy computed from linear combinations of mantle flow fields driven by relative plate motions, mantle density heterogeneity, and westward lithosphere rotation. By comparing predictions of lattice preferred orientation to asthenospheric anisotropy in oceanic regions inferred from SKS splitting observations and surface wave tomography, we constrain absolute upper mantle viscosity (to 0.5–1.0 × 1021 Pa s, consistent with other constraints) simultaneously with net rotation rate and the decrease in the viscosity of the asthenosphere relative to that of the upper mantle. For an asthenosphere 10 times less viscous than the upper mantle, we find that global net rotation must be <0.26°/Myr (<60% of net rotation in the HS3 (Pacific hot spot) reference frame); larger viscosity drops amplify asthenospheric shear associated with net rotation and thus require slower net rotation to fit observed anisotropy. The magnitude of westward net rotation is consistent with lithospheric drift relative to Indo-Atlantic hot spots but is slower than drift in the Pacific hot spot frame (HS3 ≈ 0.44°/Myr). The latter may instead express net rotation relative to the deep mantle beneath the Pacific plate, which is moving rapidly eastward in our models.This research was supported by NSF grants EAR‐0855546 (C.P.C.) and EAR‐0854673 (M.D.B.)

    The Bulletin, School of Nursing Diploma Program Alumni Association, 1979

    Get PDF
    Alumni Calendar Recognition Plaque A Letter from the President Officers and Chairpersons The Future of Nursing Education at Jefferson Annual Reports Alumni Benefits Memo from Your President Resume of Alumni Association Meetings Committee Reports The Nursing Alumni Office Serves You Profiles in Courage Special Reports Ways and Means Committee Report 38th General Hospital Reunion College of Allied Health Sciences Achievement Award Class News Marriages Births In Memoriam Alumni Notices School of Nursing Notice

    In-situ evidence for dextral active motion at the Arabia-India plate boundary

    No full text
    International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep

    Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge

    Get PDF
    Forty-nine hydrothermal sulfide-sulfate rock samples from the Endeavour Segment of the Juan de Fuca Ridge, northeastern Pacific Ocean, were dated by measuring the decay of 226Ra (half-life of 1600 years) in hydrothermal barite to provide a history of hydrothermal venting at the site over the past 6000 years. This dating method is effective for samples ranging in age from ∼200 to 20,000 years old and effectively bridges an age gap between shorter- and longer-lived U-series dating techniques for hydrothermal deposits. Results show that hydrothermal venting at the active High Rise, Sasquatch, and Main Endeavour fields began at least 850, 1450, and 2300 years ago, respectively. Barite ages of other inactive deposits on the axial valley floor are between ∼1200 and ∼2200 years old, indicating past widespread hydrothermal venting outside of the currently active vent fields. Samples from the half-graben on the eastern slope of the axial valley range in age from ∼1700 to ∼2925 years, and a single sample from outside the axial valley, near the westernmost valley fault scarp is ∼5850 ± 205 years old. The spatial relationship between hydrothermal venting and normal faulting suggests a temporal relationship, with progressive younging of sulfide deposits from the edges of the axial valley toward the center of the rift. These relationships are consistent with the inward migration of normal faulting toward the center of the valley over time and a minimum age of onset of hydrothermal activity in this region of 5850 years
    corecore