8 research outputs found

    All-electrical measurement of spin injection in a magnetic pp-nn junction diode

    Full text link
    Magnetic pp-nn junction diodes are fabricated to investigate spin-polarized electron transport. The injection of spin-polarized electrons in a semiconductor is achieved by driving a current from a ferromagnetic injector (Fe), into a bulk semiconductor (nn-GaAs) via schottky contact. For detection, a diluted magnetic semiconductor (pp-GaMnAs) layer is used. Clear magnetoresistance was observed only when a high forward bias was applied across the pp-nn junction.Comment: 4 pages, 4 figure

    Bipolar spintronics: From spin injection to spin-controlled logic

    Full text link
    An impressive success of spintronic applications has been typically realized in metal-based structures which utilize magnetoresistive effects for substantial improvements in the performance of computer hard drives and magnetic random access memories. Correspondingly, the theoretical understanding of spin-polarized transport is usually limited to a metallic regime in a linear response, which, while providing a good description for data storage and magnetic memory devices, is not sufficient for signal processing and digital logic. In contrast, much less is known about possible applications of semiconductor-based spintronics and spin-polarized transport in related structures which could utilize strong intrinsic nonlinearities in current-voltage characteristics to implement spin-based logic. Here we discuss the challenges for realizing a particular class of structures in semiconductor spintronics: our proposal for bipolar spintronic devices in which carriers of both polarities (electrons and holes) contribute to spin-charge coupling. We formulate the theoretical framework for bipolar spin-polarized transport, and describe several novel effects in two- and three-terminal structures which arise from the interplay between nonequilibrium spin and equilibrium magnetization.Comment: 16 pages, 7 figure

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Demonstration of the spin solar cell and spin photodiode effect

    Get PDF
    Spin injection and extraction are at the core of semiconductor spintronics. Electrical injection is one method of choice for the creation of a sizeable spin polarization in a semiconductor, requiring especially tailored tunnel or Schottky barriers. Alternatively, optical orientation can be used to generate spins in semiconductors with significant spin-orbit interaction, if optical selection rules are obeyed, typically by using circularly polarized light at a well-defined wavelength. Here we introduce a novel concept for spin injection/extraction that combines the principle of a solar cell with the creation of spin accumulation. We demonstrate that efficient optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-type region consists of a ferromagnet. The discovered mechanism opens the window for the optical generation of a sizeable spin accumulation also in semiconductors without direct band gap such as Si or Ge

    Cross-sectional imaging of spin injection into a semiconductor

    No full text
    Recent discoveries of phenomena that relate electronic transport in solids to the spin angular momentum of the electrons are the fundamentals of spin electronics (spintronics). The first proposed conceptual spintronic device, the spin field-effect transistor—which has not yet been successfully implemented—requires the creation and detection of spin-polarized currents in a semiconductor. Whereas electrical spin injection from a ferromagnetic metal into GaAs has been achieved recently, the detection techniques used up to now have drawbacks like the requirement of large magnetic fields or limited information about the spin polarization in the semiconductor. Here we introduce a method that, by observation across a cleaved edge, enables us to directly visualize fully remanent electrical spin injection into bulk GaAs from a ferromagnetic contact, to image the spin-density distribution in the semiconductor in a cross-sectional view and to separate the effects of spin diffusion and electron drift
    corecore