162 research outputs found

    Studies of concentration and temperature dependencies of precipitation kinetics in iron-copper alloys using kinetic monte carlo and stochastic statistical simulations

    Full text link
    The earlier-developed ab initio model and the kinetic Monte Carlo method (KMCM) are used to simulate precipitation in a number of iron-copper alloys with different copper concentrations x and temperatures T. The same simulations are also made using the improved version of the earlier-suggested stochastic statistical method (SSM). The results obtained enable us to make a number of general conclusions about the dependencies of the decomposition kinetics in Fe-Cu alloys on x and T. We also show that the SSM describes the precipitation kinetics in a fair agreement with the KMCM, and employing the SSM in conjunction with the KMCM enables us to extend the KMC simulations to the longer evolution times. The results of simulations seem to agree with available experimental data for Fe-Cu alloys within statistical errors of simulations and the scatter of experimental results. Comparison of results of simulations to experiments for some multicomponent Fe-Cu-based alloys enables us to make certain conclusions about the influence of alloying elements in these alloys on the precipitation kinetics at different stages of evolution.Comment: 18 pages, 17 postscript figures, LaTe

    Statistical Derivation of Basic Equations of Diffusional Kinetics in Alloys with Application to the Description of Diffusion of Carbon in Austenite

    Full text link
    Basic equations of diffusional kinetics in alloys are statistically derived using the master equation approach. To describe diffusional transformations in substitution alloys, we derive the "quasi-equilibrium" kinetic equation which generalizes its earlier versions by taking into account possible "interaction renormalization" effects. For the interstitial alloys Me-X, we derive the explicit expression for the diffusivity D of an interstitial atom X which notably differs from those used in previous phenomenological treatments. This microscopic expression for D is applied to describe the diffusion of carbon in austenite basing on some simple models of carbon-carbon interaction. The results obtained enable us to make certain conclusions about the real form of these interactions, and about the scale of the "transition state entropy" for diffusion of carbon in austenite.Comment: 26 pages, 5 postscript figures, LaTe

    Institutional and behaviour-change interventions to support COVID-19 public health measures: a review by the Lancet Commission Task Force on public health measures to suppress the pandemic

    Get PDF
    The Lancet COVID-19 Commission Task Force for Public Health Measures to Suppress the Pandemic was launched to identify critical points for consideration by governments on public health interventions to control coronavirus disease 2019 (COVID-19). Drawing on our review of published studies of data analytics and modelling, evidence synthesis and contextualisation, and behavioural science evidence and theory on public health interventions from a range of sources, we outline evidence for a range of institutional measures and behaviour-change measures. We cite examples of measures adopted by a range of countries, but especially jurisdictions that have, thus far, achieved low numbers of COVID-19 deaths and limited community transmission of severe acute respiratory syndrome coronavirus 2. Finally, we highlight gaps in knowledge where research should be undertaken. As countries consider long-term measures, there is an opportunity to learn, improve the response and prepare for future pandemics.publishedVersio

    Socio-Demographic Patterning of Physical Activity across Migrant Groups in India: Results from the Indian Migration Study

    Get PDF
    OBJECTIVE: To investigate the relationship between rural to urban migration and physical activity (PA) in India. METHODS: 6,447 (42% women) participants comprising 2077 rural, 2,094 migrants and 2,276 urban were recruited. Total activity (MET hr/day), activity intensity (min/day), PA Level (PAL) television viewing and sleeping (min/day) were estimated and associations with migrant status examined, adjusting for the sib-pair design, age, site, occupation, education, and socio-economic position (SEP). RESULTS: Total activity was highest in rural men whereas migrant and urban men had broadly similar activity levels (p<0.001). Women showed similar patterns, but slightly lower levels of total activity. Sedentary behaviour and television viewing were lower in rural residents and similar in migrant and urban groups. Sleep duration was highest in the rural group and lowest in urban non-migrants. Migrant men had considerably lower odds of being in the highest quartile of total activity than rural men, a finding that persisted after adjustment for age, SEP and education (OR 0.53, 95% CI 0.37, 0.74). For women, odds ratios attenuated and associations were removed after adjusting for age, SEP and education. CONCLUSION: Our findings suggest that migrants have already acquired PA levels that closely resemble long-term urban residents. Effective public health interventions to increase PA are needed

    The potential of urinary metabolites for diagnosing multiple sclerosis

    Get PDF
    A definitive diagnostic test for multiple sclerosis (MS) does not exist; instead physicians use a combination of medical history, magnetic resonance imaging, and cerebrospinal fluid analysis (CSF). Significant effort has been employed to identify biomarkers from CSF to facilitate MS diagnosis; however none of the proposed biomarkers have been successful to date. Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, non-invasive, inexpensive, and efficient diagnostic tool for various human diseases. Nevertheless, urinary metabolites have not been extensively explored as a source of biomarkers for MS. Instead, we demonstrate that urinary metabolites have significant promise for monitoring disease-progression, and response to treatment in MS patients. NMR analysis of urine permitted the identification of metabolites that differentiate experimental autoimmune encephalomyelitis (EAE)-mice (prototypic disease model for MS) from healthy and MS drug-treated EAE mice

    Effects of Pd on Catalysis by Au: CO Adsorption, CO Oxidation, and Cyclohexene Hydrogenation by Supported Au and Pd−Au Catalysts

    Get PDF
    Incorporating small amounts of Pd into supported Au catalysts has been shown to have beneficial effects on selective hydrogenation reactions, particularly 1,3-butadiene hydrogenation and the hydrogenation of nitroaromatics, especially p-chloronitrobenzene. Appropriate Pd incorporation enhances hydrogenation activity while maintaining the desirable high selectivity of supported Au catalysts. To better understand this phenomenon, a series of alumina- and titania-supported Au and dilute Pd–Au catalysts were prepared via urea deposition–precipitation. The catalysts were studied with infrared spectroscopy of CO adsorption, CO oxidation catalysis, and cyclohexene hydrogenation catalysis with the goal of understanding how Pd affects the catalytic properties of Au. CO adsorption experiments indicated a substantial amount of surface Pd when the catalyst was under CO. Adsorption experiments at various CO pressures were used to determine CO coverage; application of the Temkin adsorbate interaction model allowed for the determination of adsorption enthalpy metrics for CO adsorption on Au. These experiments showed that Pd induces an electronic effect on Au, affecting both the nascent adsorption enthalpy (ΔH0) and the change in enthalpy with increasing coverage. This electronic modification had little effect on CO oxidation catalysis. Michaelis–Menten kinetics parameters showed essentially the same oxygen reactivity on all the catalysts; the primary differences were in the number of active sites. The bimetallic catalysts were poor cyclohexene hydrogenation catalysts, indicating that there is relatively little exposed Pd when the catalyst is under hydrogen. The results, which are discussed in the context of the literature, indicate that a combination of surface composition and Pd-induced electronic effects on Au appear to increase hydrogen chemisorption and hydrogenation activity while largely maintaining the selectivities associated with catalysis by Au

    Interleukin-12p40 Modulates Human Metapneumovirus-Induced Pulmonary Disease in an Acute Mouse Model of Infection

    Get PDF
    The mechanisms that regulate the host immune response induced by human metapneumovirus (hMPV), a newly-recognized member of the Paramyxoviridae family, are largely unknown. Cytokines play an important role in modulating inflammatory responses during viral infections. IL-12p40, a known important mediator in limiting lung inflammation, is induced by hMPV and its production is sustained after the resolution phase of infection suggesting that this cytokine plays a role in the immune response against hMPV. In this work, we demonstrated that in mice deficient in IL-12p40, hMPV infection induced an exacerbated pulmonary inflammatory response and mucus production, altered cytokine response, and decreased lung function. However, hMPV infection in these mice does not have an effect on viral replication. These results identify an important regulatory role of IL-12p40 in hMPV infection

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore