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The potential of urinary metabolites for diagnosing multiple
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Teklab Gebregiworgis1,†, Chandirasegaran Massilamany2,†, Arunakumar Gangaplara2,†,
Sivasubramani Thulasingam2, Venkata Kolli1, Mark T. Werth3, Eric D. Dodds1, David
Steffen2, Jay Reddy2,*, and Robert Powers1,*

1Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304
2School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln,
Lincoln, NE 68588-0905
3Department of Chemistry, Nebraska Wesleyan University, Lincoln NE 68504

Abstract
A definitive diagnostic test for multiple sclerosis (MS) does not exist; instead physicians use a
combination of medical history, magnetic resonance imaging, and cerebrospinal fluid analysis
(CSF). Significant effort has been employed to identify biomarkers from CSF to facilitate MS
diagnosis; however none of the proposed biomarkers have been successful to date. Urine is a
proven source of metabolite biomarkers and has the potential to be a rapid, non-invasive,
inexpensive, and efficient diagnostic tool for various human diseases. Nevertheless, urinary
metabolites have not been extensively explored as a source of biomarkers for MS. Instead, we
demonstrate that urinary metabolites have significant promise for monitoring disease-progression,
and response to treatment in MS patients. NMR analysis of urine permitted the identification of
metabolites that differentiate experimental autoimmune encephalomyelitis (EAE)-mice (prototypic
disease model for MS) from healthy and MS drug-treated EAE mice.

Keywords
Multiple sclerosis; NMR metabolomics; biomarkers; disease diagnosis

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS)
characterized by selective loss of myelin sheath encapsulating the neuronal axons.1

Treatments of MS are more effective during the early course of the disease when symptoms
are mild.2 Thus, the early diagnosis of MS is critical in order to quickly initiate treatments
that slow the progression of the disease and improve the quality of a patient’s life.3
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Unfortunately, MS is a very challenging disease to properly diagnose,4 where a
misdiagnosis is a common occurrence that inevitably leads to a delay in the correct
treatment.5 Significant effort has been employed to identify biomarkers from cerebrospinal
fluid (CSF) to facilitate MS diagnosis, but this endeavor has proven to be challenging and
has not been successful (see supplementary discussion).6 The analysis of urine samples for
MS biomarkers has only been minimally investigated, but holds significant promise.7 The
pathology of MS is associated with widespread demyelination, glial scarring and an
inflammatory response that will inevitably result in a systematic change in the excreted
metabolome. Thus, urinary metabolites may be a valuable approach for diagnosing MS and
evaluating the in vivo efficacy of MS drug candidates.8

MS is believed to be an immune-mediated (autoimmune) disease requiring the mediation of
T cells and/or B cells. Thus, experimental autoimmune encephalomyelitis (EAE) can be
induced by immunizing mice with myelin antigens or their peptide fragments emulsified in
complete Freund’s adjuvant (CFA).9 Because of similarities with respect to genetic
susceptibility, environmental triggers, disease pathology, and clinical signs and disease
course, the EAE model has also been used extensively in MS drug discovery research and as
a disease model for MS.10 In fact, the majority of drugs being tested now in the phase II and
phase III clinical trials were first examined in EAE.11 This includes fingolimod (Gilenya™,
Novartis), a first-in-class orally administered drug approved for MS therapy.12, 13

Fingolimod is more efficacious than other MS treatments.14, 15 Importantly, the mechanism
of action for fingolimod has been shown to be similar in both humans and the EAE-mouse
model.16 Specifically, fingolimod suppresses the disease-inducing abilities of myelin-
reactive T cells by multiple mechanisms.17, 18 Thus, the analysis of changes in urinary
metabolites in mice resulting from fingolimod treatment is likely to translate to similar
human studies.

Our studies involve the use of 6-to 8-week-old female C57Bl/6 mice which develop a
chronic progressive form of paralysis when immunized with the myelin oligodendrocyte
glycoprotein (MOG) 35–55 (EAE mice).19 To monitor a response to drug treatment, a group
of EAE mice were treated with fingolimod. Establishment of EAE and the efficacy of
fingolimod treatment were confirmed by clinical scoring for paralysis and histological
evaluation of brains and spinal cords (Fig. 1a and Supplementary Table 1). The experimental
design consisted of seven treatment groups (n=13) that includes healthy, saline, CFA, EAE,
saline plus fingolimod (saline-treated), CFA plus fingolimod (CFA-treated) and EAE plus
fingolimod (EAE-treated). Fingolimod (1 mg/kg body weight) completely prevented clinical
EAE, except for one mouse with EAE score of 2 (mild EAE). Expectedly, MOG-specific T
cells in EAE mice treated with fingolimod expanded comparably with those of untreated
mice, but they did not induce the disease (Supplementary Fig. 1 and Fig. 1a).

Individual urine samples were collected daily from all the mice belonging to the seven
treatment groups, where sample collection began on day 7 and continued until day 30
postimmunization. Ninety one-dimensional (1D) 1H NMR spectra were acquired for the
urine samples collected on day 17, when the EAE severity reached a peak (Fig. 1a).
Representative NMR spectra are shown in figure 1b, where a visual comparison shows a
clear difference between EAE and healthy mice; and importantly, a similarity in the pattern
between healthy and EAE-treated mice. A set of NMR peaks (labeled A) were significantly
decreased in the spectra for EAE mice relative to healthy mice. Conversely, two sets of
NMR peaks (labeled B) were increased in the EAE mice relative to healthy mice. These
spectral differences are potential biomarkers for MS. The NMR spectra for the other control
groups were essentially identical to the NMR spectra for the healthy mice and EAE-treated
mice (Supplementary Fig. 2) suggesting that evidence of inflammatory changes in the CNS
can be captured by analyzing urinary metabolites.
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Principal component analysis (PCA) of the 1D 1H NMR spectra further defines a difference
in the urine profiles between healthy and EAE-mice (Fig. 1c-f). The two-dimensional (2D)
PCA scores plot generated from 86 of the 1D 1H NMR spectra (4 spectra were rejected
during the analysis) exhibited two distinct clusters. The rejected spectra fell significantly
outside the 95% confidence limit for the EAE-mice cluster and for the PCA model (not
shown), and were randomly distributed throughout the scores plot. The ellipses that
correspond to the 95% confidence interval from a normal distribution for each cluster clearly
define two statistically distinct classes (Fig. 1c). Correspondingly, this result indicates that
the urinary metabolites for EAE mice are distinct from the healthy mice. Importantly, the
EAE-treated mice cluster together with the healthy mice. This shift in the urinary metabolite
profile provides a proof-of concept for two key events: (i) fingolimod was effective in
suppressing the disease severity in EAE mice and (ii) the therapeutic efficacy of fingolimod
was expected to change the metabolite pattern of EAE group towards the healthy group.
This is consistent with the clinical scoring and histological evaluation observed for the EAE-
treated mice (Fig. 1a and Supplementary Table 1).

Orthogonal partial least-squares discriminant analysis (OPLS-DA) of the 1D 1H NMR
metabolomics data was performed to further substantiate the observed difference in urinary
metabolites between EAE, healthy and EAE-treated mice (Fig. 1d). Strikingly, the OPLS-
DA 2D scores plot also contains two statistically distinct clusters. Importantly, a CV-
ANOVA test validated the OPLS-DA model with a resulting p value of 1.6x10−31.20 This
provides statistical verification that the urinary metabolites from EAE mice are distinct from
both healthy and EAE-treated mice; and the corresponding similarity between healthy and
EAE-treated mice. Further validation of the statistical significance of the clustering pattern
in the PCA and OPLS-DA 2D scores plot was determined by generating metabolomics tree
diagrams (Figs. 1e and 1f) using our PCAtoTree program, where we recently replaced
bootstrap values with a Mahalanobis metric (p values).21, 22 Again, the high p values (most
> 0.1) indicate that only the nodes that separate the EAE mice from the healthy and the
EAE-treated mice (p value <5.0x10−13) are statistically significant. PCA and OPLS-DA
scores plot generated from the NMR analysis of urine samples collected on days 23 and 30
are presented in the supplementary material (Supplementary Figs. 3–4) and yielded similar
results. It is also important to note that the healthy and EAE-treated mice also clustered
together and were indistinguishable from the four other negative controls, further
establishing that cluster separation is a result of EAE.

The group distinction based on the observed changes in urinary metabolites is disease
related as opposed to other environmental factors. The C57Bl/6 mice are inbred animals,
were obtained simultaneously, were randomly distributed between each group, and were
maintained under identical conditions besides the described group-specific treatments. The
only other variable between the groups was the hydration and nutrient supplement (DietGel)
provided to EAE and EAE-treated mice with a clinical score of 3 or higher. This is based on
accepted protocols for the ethical treatment of animals. Importantly, both EAE and EAE –
treated mice received the DietGel supplement, but separation was still observed in the PCA
and OPLS-DA scores plot. Critically, the EAE mice treated with fingolimod still clustered
with the healthy mice and other control mice, which did not receive the DietGel supplement
(Fig. 1c and d).

A diet control study comparing healthy mice with or without access to a DietGel supplement
resulted in urinary metabolomes distinct from EAE mice (Supplementary Fig. 5). Mice
received the DietGel supplements for 5 to 7 days, similar to the EAE-mice in the EAE
induction and treatment study shown in figures 1 and 2 (days 12 to 17). Clearly, the DietGel
supplement is not the source of the observed changes in the EAE mice urine. A
corresponding 2D PCA scores plot comparing urine samples collected over three days from
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healthy mice with and without the DietGel supplement resulted in a larger within group
variation for mice receiving the DietGel supplement (Supplementary Fig. 5b). In fact, the
distribution appears bimodal, potentially distinguishing between individual animals and their
preference for the DietGel supplement over food-pellets. Correspondingly, the mice that
only received the Teklad food pellets fall within the ellipse defining the 95% confidence
interval for the mice receiving the DietGel supplement. Presumably, the pellet-only fed mice
overlap with the mice that prefer the Teklad food pellets over the DietGel supplement.
Variations were also observed between the healthy mice samples collected from day 5 to
day 7 and from those of day 17 (Supplementary Fig. 5a). Nevertheless, the 2D PCA scores
plot (Supplementary Fig. 5c) once again yields a clear separation between healthy and EAE
mice. Furthermore, the scores plot indicates that the healthy mice with or without access to
the DietGel supplement are more similar to each other than to the EAE mice. This clearly
indicates that metabolite changes due to EAE are more pronounced than perturbations from
dietary variations. This bodes well for being able to detect similar urinary biomarkers for
MS despite an expected wider diversity in the diets of human patients.

The class distinction observed in the PCA and OPLS-DA scores plot suggest the presence of
a set of metabolites that could be used as potential biomarkers to differentiate EAE mice
from healthy mice. The S-plot generated from the OPLS-DA model identifies the major
spectral features that contribute to the class separation observed in the scores plot, where the
corresponding metabolite assignments are labeled in figure 2a. To further validate the
statistical relevance of these metabolites to differentiate between healthy and EAE mice,
normalized average peak intensities were calculated for each bin and then compared
between the seven treatment groups using a standard Student’s t-test (Fig. 2b). These
normalized average peak intensities are proportional to metabolite concentrations.
Statistically significant changes were observed in the relative metabolite concentrations
between healthy and EAE mice. Specifically, hippurate (p value 1.3x10−5) and fructose (p
value 2.1x10−3) were up-regulated in EAE mice compared to healthy mice. Conversely,
citrate (p value 1.3x10−6), oxoglutaric acid (p value 7.0x10−7), taurine (p value 4.9x10−7)
and urea (p value 5.8x10−8), were down-regulated in EAE mice compared to healthy mice.
In addition, the effect of fingolimod treatment was also assessed by a similar comparison
between the EAE mice with and without fingolimod treatment. Hippurate (p value 2.7x10−5)
and fructose (p value 2.2x10−4) were up-regulated in EAE-mice compared to EAE-treated
mice. Conversely, citrate (p value 1.2x10−5), oxoglutaric acid (p value 2.4x10−3), taurine (p
value 2.5x10−6) and urea (p value 4.2x10−4) were down-regulated in EAE mice compared to
EAE-treated mice (Fig. 2b).

2D 1H-13C HSQC NMR spectra were also acquired to provide a further, in-depth analysis of
EAE-induced metabolite changes in urine samples (Fig. 3a). The improved resolution and
correlated 1H and 13C chemical shifts increases the accuracy and the number of metabolite
assignments. But, the analysis of the low naturally abundant 13C-labeled metabolites (only
1.1%) is a significant challenge that required large urine volumes (~ 500 µl) to obtain
acceptable spectral signal-to-noise. Unfortunately, obtaining this much urine from a
completely paralyzed EAE mice is not practically feasible. Thus, it was necessary to pool
equal volume of urine samples from a group of 4 to 5 mice of identical clinical scores within
a cage. Pooling samples does have an advantage since it will minimize within-group
variations and maximize between-group differences by effectively averaging NMR peak
intensities (metabolite concentrations) within a group.

Urine samples were collected from triplicate sets of EAE, EAE-treated and healthy mice,
and then used to acquire the corresponding 2D 1H-13C HSQC NMR spectra. Normalized
differences in average peak intensities relative to healthy mice are summarized in the heat-
map depicted in figure 3b. Over 32 metabolites were identified with different concentrations
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between EAE and healthy mice, which also contained the metabolites identified from the
OPLS-DA S-plot analysis. Interestingly, some of the identified metabolites were previously
implicated in the pathogenesis of MS and EAE (histamine, glutamate)23, 24 or identified as
markers of metabolic diseases with associated neurological problems (3-hydroxyisobutyric
acid, 3-ureidopropionate, guanidinoacetate).25–27 Also, one of the identified metabolites,
indoxyl sulfate, is likely to originate from the gut microflora.28 This is consistent with the
previous observation that EAE-induction and progression is influenced by gut
microorganisms as opposed to attenuation of EAE in germ-free mice.29 Other potential
metabolites identified in our NMR analysis of urine samples have also been associated with
EAE, MS, and other neurological diseases (see supplementary discussion).

MS is accompanied by various pathological features like inflammation, demyelination, and
axonal damage. This inherent complexity of MS makes it challenging to identify a single
biomarker to monitor the progression and treatment of the disease. Alternatively, our NMR
analysis of urine samples demonstrates that a diverse set of metabolites can be used to
differentiate between healthy and EAE mice. These metabolite changes can also be used to
monitor the recovery of EAE mice upon treatment with fingolimod. Also, the 1D 1H NMR
analysis of urine samples takes only about 10 minutes per sample and completely lacks any
of the risks or side effects associated with the analysis of CSF. Thus, the NMR analysis of
urine holds the promise of being an easy, fast, and safe diagnostic tool for MS. Additionally,
the NMR analysis of urine may be a valuable approach for evaluating the in vivo efficacy of
drug-leads; and for designing patient-specific treatments.

Methods
Peptide synthesis

MOG 35–55 (MEVGWYRSPFSRVVHLYRNGK) was synthesized on 9-
fluorenylmethyloxy-carbonyl chemistry (Neopeptide, Cambridge, MA) to a purity of more
than 90% as verified by HPLC and mass spectroscopy. The peptide was dissolved in 1x
phosphate buffered saline, and stored at −20°C until used. The MOG 35–55 peptide was
used to induce EAE in mice.

Mice
Ninety 6 to 8-week-old female C57Bl/6 (H-2b) mice were obtained from the Jackson
Laboratory (Bar Harbor, ME). C57Bl/6 (H-2b) mice are inbred animals and individual
variations in the gut flora are not expected. Furthermore, the animals are maintained in the
same environment and received the same food. All the mice were located in the same room
within the University of Nebraska-Lincoln (UNL) Life Sciences Annex, managed and
maintained by the Institutional Animal Care Program in accordance with the animal protocol
guidelines of UNL. The mice were provided with the Teklad global 16% protein rodent diet
(Harlan Laboratories, Indianapolis, IN). The mice were randomly classified into twenty-one
individually ventilated cages. Fifteen of the cages had four animals while the other six cages
had five animals. The mice were acclimatized for three days before the start of the
experiment.

During the experiment all the mice were given ad libtum access to food and water.
Correspondingly, the amount of food and water consumed by an individual mouse was not
regulated or quantified. Also, the mice were not fasted during urine collection or at any other
time during the experiment. In this manner, the metabolomics experiment captures the
natural variation in nutrient consummation per animal and provides a more realistic
metabolomic background. Additionally, if a cage containing either an EAE group or EAE
group under fingolimod treatment contained a mouse exhibiting a clinical score of 3 or
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above, the entire cage was supplemented with a nutrient fortified hydration gel (moisture,
73.4%; DietGel® 76A, ClearH2O, Portland, ME). The DietGel combines hydration and
standard nutrients (76A maintenance diet formulation)30 in a palatable form for
compromised rodents. Importantly, all the mice in the cage still have access to the Teklad
global 16% protein rodent diet in addition to the nutrient fortified hydration gel. The EAE
and EAE-treated mice received supplemental DietGel on day 12. The EAE mice received
the supplemental DietGel for the remainder of the experiment; whereas, the EAE–treated
mice stopped receiving the supplemental DietGel from day 15. All of the EAE mice treated
with fingolimod had adequately recovered by day 15.

EAE induction and treatment
The experimental design consisted of a healthy group (n=12) and six treatment groups
(n=13). These include saline, complete Freund’s adjuvant (CFA), EAE, saline plus
fingolimod (saline-treated), CFA plus fingolimod (CFA-treated) and EAE plus fingolimod
(EAE-treated). Each group of mice was divided into three cages, respectively containing 4, 4
and 5 (or 4 for healthy) animals. The cages for each experimental group were selected
randomly. To induce EAE, peptide emulsions were prepared by mixing MOG 35–55 in CFA
containing Mycobacterium tuberculosis H37RA extract (Difco Laboratories, Detroit, MI) to
a final concentration of 5 mg/ml. Each animal received 200 µg of peptide-emulsion
subcutaneously in the inguinal and sternal regions. In addition, pertussis toxin (List
Biological Laboratories, Campbell, CA) was administered (200 ng/mouse) intraperitoneally
on day 0 and day 2 post-immunization.31–33 Seven days post-immunization, fingolimod
dissolved in 1x sterile normal saline (working dilution of 0.2 mg/ml), was administered
intraperitoneally to the animals corresponding to treated groups as indicated above at 1 mg/
kg body weight daily until day 30.

Urine collection and clinical scoring
Urine samples were collected both prior to, and after disease induction. Urine collections
occurred three times daily (10–11 AM; 2–3 PM and 10–11 PM) from each animal by
expressing the bladder. The samples collected from each batch of animals were pooled on a
daily basis and preserved at −80°C until further analysis. In addition, the samples collected
from individual animals on days 17, 23 and 30 post-immunization were also preserved as
separate aliquots. The immunized mice were monitored for clinical signs of EAE and scored
as described previously:31, 34 0, no signs of disease; 1, limp tail or hind limb weakness; 2,
limp tail and hind limb weakness; 3, partial paralysis of hind limbs; 4, complete paralysis of
hind limbs and 5, moribund or dead.

NMR sample preparation
The samples for the 1D 1H NMR experiments were prepared by adding 600 µl of a 50 mM
phosphate buffer in 99.8% D2O (Isotec, St. Louis, MO) at pH 7.2 (uncorrected) to 25 µL of
urine collected from each mouse. The six treatment groups contained 13 mice per group and
the healthy group contained 12 mice for a total of 90 NMR urine samples. The samples for
the 2D 1H-13C HSQC experiments were prepared by adding 100 µL of a 50 mM phosphate
buffer in 99.8% D2O at pH 7.2 (uncorrected) and 500 µL of urine pooled from a group of 4
to 5 healthy or EAE-mice. Each pooled group of mice was assigned the same clinical
assessment score and the animals were placed in the same cage. The urine was collected at
the same time on a daily basis. A triplicate set of NMR samples were prepared for each
group for the 2D 1H-13C HSQC experiments.
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NMR data collection and analysis
All NMR experiments were performed with Bruker AVANCE DRX 500 MHz spectrometer
equipped with 5 mm triple-resonance cryogenic probe (1H, 13C, 15N) with a Z-axis gradient.
A BACS-120 sample changer with Bruker ICON-NMR software was used to automate the
NMR data collection. The 1D 1H NMR data was collected at 298K with 32K data points, a
spectrum width of 5483 Hz, 128 scans and 16 dummy scans using an excitation sculpting
pulse sequence to remove the solvent peak.35 The 2D 1H-13C HSQC NMR spectrum was
collected at 298K with 512 scans, 32 dummy scan and a 1.5 s relaxation delay. The
spectrum was collected with 2K data points and a spectrum width of 4734 Hz in the direct
dimension and 64 data points and a spectrum width of 18864 Hz in the indirect dimension.
ACD/1D NMR manager version 12.0 (Advanced Chemistry Development, Inc.) was used to
process the 1D 1H NMR spectra. Intelligent binning was used to integrate each region with a
bucket size of 0.025 ppm. The buckets were normalized by the intensity of the 3-
(trimethylsilyl)propionic acid-2,2,3,3-d4(TMSP) peak. Each NMR spectrum was mean
centered and auto-scaled by the standard deviation as described in Zhang et al.36

NMRPipe37 was used to process the 2D 1H-13C HSQC spectra. Peak-picking and peak-
matching were accomplished using NMRViewJ Version 8.0.38 Peak-intensities were
normalized for each 2D 1H-13C HSQC NMR spectrum by dividing each peak-intensity by
the average peak-intensity for a given spectrum. Each NMR peak for each metabolite from
the triplicate set of 2D 1H-13C HSQC spectra was further normalized to the maximum peak
intensity for the metabolite. The maximum peak-intensity for each metabolite was scaled to
100. Chemical shift references from the Human Metabolomics Database were used to assign
each NMR peak to a metabolite.39

Statistical analysis
Principal component analysis (PCA), orthogonal partial least square discriminant analysis
(OPLS-DA), and S-plots were generated using SIMCA P+ 12 (UMETRICS). The tree
diagram and p values for the dendrograms were generated using a new updated version of
our PCAtoTree software previously described by Werth et al.21, 22 The new method is based
on the UPGMA tree generation algorithm with multivariate normal modeling of the dataset
and use of a Mahalanobis metric (p values) during calculation of tree node distances. A
standard Student’s t-test calculated in Excel was used to determine if differences between
groups or metabolite concentrations were statistically significant (p value > 0.05).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NMR metabolomics of EAE mice
(a) Clinical scores of EAE and EAE-treated mice. Groups of mice were immunized with
MOG 35–55 in CFA, and the animals were treated with or without fingolimod daily (1mg/
kg body weight) from day 7 postimmunization through day 30. The animals were monitored
for EAE signs and the disease-severity was scored. (b) Examples of 1D 1H NMR spectra of
urine samples collected from EAE, healthy, and EAE-treated mice. Major spectral
differences are highlighted. (c) 2D PCA and (d) 2D OPLS-DA scores plot generated from
the 1D 1H NMR spectra acquired for the urine samples from the seven treatment groups
namely: healthy ( ), saline ( ), CFA ( ), EAE ( ), saline-treated ( ), CFA-treated ( ), and
EAE-treated mice ( ). The OPLS-DA used one predictive component and one orthogonal
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component to yield a R2X of 0.690, R2Y of 0.938 and Q2 of 0.841. The CV-ANOVA
validation of the OPLS-DA class distinctions yielded a p value of 1.55e−31. The ellipses
correspond to the 95% confidence limits from a normal distribution for each cluster. (e) and
(f) Metabolomics tree diagrams determined from the PCA and OPLS-DA scores plots,
respectively. The coloring scheme for each group in the tree diagram correlates with the data
point colors in the scores plot. The p values for each node are indicated on the tree diagram.
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Figure 2. Potential metabolite biomarkers for EAE
(a) S-plot generated from the OPLS-DA model presented in Figure 1d. Each NMR bin with
a covariance of greater than 0.10 or less than −0.10 were identified as major contributors to
class separation. These bins are highlighted as red triangles and are labeled with the assigned
metabolite. (b) The normalized average peak intensities or bin integrals identified in the S-
plot from (a) as major contributors to class separation are plotted as a function of treatment
class and metabolite assignment. The standard deviation in the normalized average peak
intensities is indicated on the bar graphs.
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Figure 3. Detailed analysis of EAE-dependent urine metabolites
(a) An overlay of 2D 1H-13C HSQC NMR spectra acquired from healthy (black) and EAE
(red) mice urine samples. Metabolite assignments are indicated on the spectrum. (b) Heat
map generated from the normalized relative intensity of the corresponding metabolite peak
obtained from the 2D 1H-13C HSQC NMR spectrum. The dendrogram represents a
hierarchal clustering of the metabolites according to relative concentration changes between
healthy, EAE and EAE-treated mice. Metabolites significantly altered in the urine from
EAE, but not in EAE-treated mice are in italics (p <0.05 *, p <0.01**, p <0.001***).
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Supplementary Discussion 

For multiple sclerosis (MS), biomarkers are expected to be related to inflammation, axonal 

damage, demyelination, oxidative stress, and remyelination. As a result, a number of cellular and 

protein biomarkers have been proposed
1-4

 that include: (i) cytokines and their receptors 

[interleukin (IL)-6, IL-10, IL-12], (ii) chemokines and their receptors (CCR5, CXCR3, 

CXCL10), (iii) antibodies [anti-myelin basic protein (a-MBP), anti-myelin oligodendrocyte 

glycoprotein (MOG)] (iv) antigen-processing and presentation [CD40,CD40L, heat shock 

protein], (v) cell-cycle and apoptosis (c-FLICE inhibitory protein, tumor necrosis factor-related 

apoptosis-inducing ligand), (vi) cellular subpopulations (CD4
+
/CD25

bright
 T cells, NK cells, NKT 

cells), (vii) demyelination (QYNAD peptide), (viii) axonal/neuronal damage (NF-L, Tau 

protein), and (ix) remyelination (neural cell adhesion molecule, ciliary neurotrophic factor). For 

obvious reasons, the search for MS biomarkers has focused on the analysis of cerebrospinal fluid 

(CSF).
5-15

 Unfortunately, this endeavor has proven to be extremely challenging and none of these 

proposed biomarkers have been successful to date.
1-4

 Additionally, there are associated risks with 

obtaining CSF from patients that diminishes its value as a routine diagnostic tool.
16, 17

 

Conversely, the analysis of urine for MS biomarkers has been minimally explored, where the 

focus has been on the analysis of specific metabolites, neopterin, nitric oxide and p-cresol 

sulfate, as surrogates for interferon-β-1 or a-MBP-like material.
18-20

 A number of metabolites 

identified by our in-depth NMR analysis of urine from experimental autoimmune 

encephalomyelitis (EAE), EAE-treated, and healthy mice have been previously described in the 

literature of having an association with EAE, MS or neurological diseases. A brief summary of 

these prior findings is presented. 
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Urea concentrations are increased in the serum in EAE mice, which is probably a result of 

kidney dysfunction that is caused by EAE.
21

  Renal problems have also been observed in MS 

patients.
22

 Bireley et al. demonstrated a relationship between alterations in the urea cycle and 

neurological disorders.
23

  Similarly, Toncev et al. observed a decrease in serum uric acid levels 

in MS patients.
24

 EAE has also been shown to be inhibited by urea and by drugs used for treating 

urea cycle disorder. Specifically, sodium benzoate
25

 and sodium phenyl acetate
26

 were shown to 

ameliorate the severity of EAE.  

 

Taurine has been reported to have neuromodulation, immunomodulation, and neuroprotective 

effects.
27

 Taurine derivatives, such as acamprostate and taurine chloramine, also can modulate 

lymphocyte proliferation, cytokine production, leukocyte activation, and dendritic cell function 

in in vivo experiments.
28, 29

 Taurine has been shown to increase in the CSF from EAE rats
30

, 

tissues from EAE mice 
31

, and CSF from MS patients.
32

 Taurine analogs have been shown to 

ameliorate the severity of EAE.
33

 

 

3-hydroxyisobutyric acid is an intermediate of valine metabolism.
34

 Accumulation of 3-

hydroxyisobutyric acid in tissues results in a corresponding increase in urinary excretion and is 

shown to be associated with brain damage and neurodevelopmental problems.
35-37

 An in vitro 

study also demonstrated that 3-hydroxyisobutrate inhibits enzymes involved in energy 

metabolism in the cerebral cortex of young rats.
38

  

 

A mutation in the human ETHE1 gene (ethylmalonic encephalopathy protein 1) is characterized 

by lesions in the basal ganglia and brainstem with increased levels of ethylmalonic acid in body 
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fluids.
39

 Alternatively, short-chain acyl-CoA dehydrogenase deficiency (SCAD) is also known to 

increase the amount of ethylmalonic acid in the urine.
40

 Among other symptoms, SCAD causes 

seizures and epilepsy.  

 

3-ureidopropionate is a product of pyrimidine degradation. Pyrimidine metabolism 

abnormalities are reported to be associated with neurological diseases.
41

   

 

Guanidinoacetate is an intermediate in the biosynthesis of creatine and has been shown to be 

associated with neurological disorders due to a deficiency in guanidinoacetate 

methyltransferase.
42

  

 

Agmatine is an intermediate of arginine metabolism.
43

 Creatine metabolism depends on 

arginine, where a decrease in creatine contributes to neurological symptoms.
44

 Creatine was also 

shown to be increased in the white matter from patients with relapsing-remitting multiple 

sclerosis.
45

 

 

Fructose has been shown to be increased in CSF samples collected from MS patients with or 

without inflammatory brain plaques,
46

 and from secondary progressive MS patients.
47

 

Furthermore, there is a close correlation between glucose and fructose concentrations in CSF.
48

 

 

Histamine and its receptors (H1 to H4) have been implicated in MS pathogenesis and EAE.
49

 

Histamine regulates a number of physiological processes including inflammation and immune 

responses. 
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Acetylglutamic acid is a metabolic product of glutamic acid (glutamate), where glutamate and 

its receptors have been implicated in MS/EAE pathogenesis.
50

 Glutamate has been shown to be 

either increased or unchanged in CSF from MS patients, but CSF from EAE rats had decreased 

levels of glutamate.
30

 

 

Supplementary Methods 

Peptide synthesis. MOG 35-55 (MEVGWYRSPFSRVVHLYRNGK) and ovalbumin (OVA) 

323-339 (ISQAVHAAHAEINEAGR) were synthesized on 9-fluorenylmethyloxy-carbonyl 

chemistry (Neopeptide, Cambridge, MA) to a purity of more than 90% as verified by HPLC and 

mass spectroscopy. The peptides were dissolved in 1x phosphate buffered saline, and stored at -

20
0
C until used. The MOG 35-55 peptide was used to induce EAE in mice and the OVA 323-339 

was used as a control. 

 

Histopathology 

Upon termination, the mice were euthanized and brains and spinal cords were collected in 10% 

phosphate buffered formalin. Following fixation, brain sections through cerebrum, hippocampus, 

cerebellum and brain-stem; and spinal cords sections comprised of three sections each from 

cervical, thoracic, lumbar and sacral regions were made. The tissues were stained by 

hematoxylin and eosin staining, blinded to treatment and examined histologically by a board 

certified pathologist and scored for lesion types and severity, and counts were added together. 

Inflammation was primarily classified as lymphocytic, suppurative, or mixed.
51, 52
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T cell proliferation assay 

Lymph nodes (LN) were harvested upon termination of experiment from all the groups of mice 

used in the study and lymph node cells (LNC) were prepared. The cells were stimulated with 

MOG 35-55 and OVA 323-339 (control) peptide at a cell density of 5 x 10
6
 cells/ml for two days 

in growth medium containing RPMI medium supplemented with 10% fetal bovine serum, 1 mM 

sodium pyruvate, 4 mM L-glutamine, 1x each of nonessential amino acids and vitamin mixture 

and 100 U/ml penicillin–streptomycin (Lonza, Walkersville, MD). Cultures were then pulsed 

with tritiated 
3
[H] thymidine (1 μCi/well; MP Biomedicals, Solon, OH); 16 h later the 

proliferative responses were measured as counts per minute (cpm) using a Wallac liquid 

scintillation counter (PerkinElmer, Waltham, MA).
52

 

  

Major histocompatibility complex (MHC) class II dextramer staining 

To determine the frequencies of antigen-specific CD4 T cells in EAE vs. EAE-treated groups, we 

performed MHC class II dextramer staining. Briefly, soluble MHC class II/IA
b
 monomers 

covalently tethered to MOG 35-55 and IA
s 

/Theiler’s murine encephalomyelitis virus (TMEV) 

70-86 (control) were expressed in the baculovirus system and the respective dextramers were 

derived as described previously.
52, 53

 LNC obtained from the EAE and EAE-treated mice were 

stimulated with MOG 35-55 (20 µg/ml) for two days in growth medium and the cells were then 

maintained in growth medium containing IL-2. Viable lymphoblasts harvested on day 6 

poststimulation were stained with MOG 35-55 and TMEV 70-86 dextramers followed by 

staining with anti-CD4 (ebioscience, San Diego, CA) and 7-aminoactinomycin-D (7-AAD; 

Invitrogen, Carlsbad, CA). After washing, the cells were analyzed by flow cytometry 
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(FACSCalibur, BD, Biosciences, San Diego, CA) and the percentages of dextramer positive 

(dext
+
) cells were determined in the live (7-AAD

-
) CD4 population.

53
  

 

Diet Control. To evaluate the impact of the supplemental DietGel on urinary metabolites, urine 

was collected from healthy mice that received either the Teklad global 16% protein rodent diet 

(n=10) or the Teklad global 16% protein rodent diet supplemented with DietGel (n=10).  Twenty 

6 to 8-week-old female C57Bl/6 (H-2
b
) mice were obtained from the Jackson Laboratory (Bar 

Harbor, ME). The mice were randomly classified into four cages and were acclimatized for three 

days before the start of the experiment. For seven days, the mice received the Teklad global 16% 

protein rodent diet with or without the supplemental DietGel. Urine samples were collected on 

the, fifth, sixth and seventh days of the experiment. Urine collections occurred three times daily 

(10-11 AM; 2-3 PM and 10-11 PM) from each animal by expressing the bladder. The urine 

samples collected from individual animals were preserved as separate aliquots and stored at -80
o 

C until further analysis. NMR data collection analysis and the follow-up statistical analysis 

followed the identical protocol described for the EAE induction and treatment experiment.   
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Supplementary Table and Figures 

 

Supplementary Table 1. Histological evaluation of brains and spinal cords  

 

 

Treatment 

Clinical disease No. of inflammatory foci
a
 

Incidence 

(%) 

Mean day  

of onset
b
 

Mean 

maximum 

score
b
 

Meninges Parenchyma Total 

Saline    0 0 0 

Saline-treated    0 0 0 

CFA    0 0 0 

CFA-treated    0 0 0 

EAE 13/13 (100) 13.5  0.4 3.5  0.3 6.54   1.26 7.53  1.37 14.07  2.47 

EAE-treated 1/13 (7.69)   0.04  0.04 0.04  0.03 0.08  0.06 

p-values    8.3x10
-6

 1.8x10
-5

 5.2x10
-6

 
a
 numbers are mean ± SEM.  

b 
represents only mice that showed clinical disease.   

Scoring scale: 0, no signs of disease; 1, limp tail or hind limb weakness; 2, limp tail and hind 

limb weakness; 3, partial paralysis of hind limbs; 4, complete paralysis of hind limbs and 5, 

moribund or dead.  
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Supplementary Figure 1. (a) T-cell proliferative response. Groups of mice were immunized 

with MOG 35-55 in CFA, and the animals were treated with or without fingolimod daily 

(1mg/kg body weight) starting day 7 postimmunization until day 30. At termination, LN were 

harvested to prepare single cell suspensions. LNC were stimulated with MOG 35-55 and OVA 

323-339 (control) for two days, and after pulsing with 
3
[H] thymidine for 16 hours, proliferative 

responses were measured as cpm based on thymidine-incorporation. Mean  SEM values for a 
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group of mice are shown. (b) Dextramer staining. LNC obtained from the above groups were 

stimulated with MOG 35-55 (20µg/ml) for two days and the cells were maintained in growth 

medium containing IL-2. On day 6 poststimulation, viable lymphocytes were stained with 

IA
b
/MOG 35-55 and IA

s
/TMEV 70-86 (control) dextramers, anti-CD4 and 7-AAD. After 

acquiring the cells by flow cytometry, percentages of dext
+
 cells were analyzed in the live (7-

AAD
-
) CD4 subset. Left and right panels represent flow cytometric dot plots and mean  SEM 

values respectively.  
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Supplementary Figure 2. Representative 1D 
1
H NMR spectra of urine samples obtained from 

healthy, saline, CFA, EAE, saline-treated, CFA-treated and EAE-treated mice. The red arrows 

indicated regions of the spectra with visible alterations in EAE group in comparison with the 

other groups. 
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Supplementary Figure 3. (a) 2D PCA and (b) 2D OPLS-DA scores plot generated from the 1D 

1
H NMR spectra acquired for the urine samples from day 23. The three classes are healthy (+), 

EAE ( ), and EAE-treated mice ( ). The OPLS-DA used one predictive component and one 

orthogonal component to yield an R
2
X of 0.761, R

2
Y of 0.947 and Q

2
 of 0.853. The CV-

ANOVA validation of the OPLS-DA class distinctions yielded a p-value of 3.8x10
-7

. The 

ellipses correspond to the 95% confidence limits from a normal distribution for each cluster. (c) 

and (d) Metabolomics tree diagrams determined from the (a) PCA and (b) OPLS-DA scores plot, 

respectively. The p-values for each node are indicated on the tree diagram. 
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Supplementary Figure 4. (a) 2D PCA and (b) 2D OPLS-DA scores plot generated from the 1D 

1
H NMR spectra acquired for the urine samples from day 30. The three classes are healthy (+), 

EAE ( ), and EAE-treated mice ( ). The OPLS-DA used one predictive component and one 

orthogonal component to yield an R
2
X of 0.76, R

2
Y of 0.97 and Q

2
 of 0.922. The CV-ANOVA 

validation of the OPLS-DA class distinctions yielded a p-value of 3.8x10
-7

. The ellipses 

correspond to the 95% confidence limits from a normal distribution for each cluster. (c) and (d) 

Metabolomics tree diagrams determined from the (a) PCA and (b) OPLS-DA scores plot, 

respectively. The p-values for each node are indicated on the tree diagram. 
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Supplementary Figure 5. (a) Calculated median 1D 
1
H NMR spectra of urine samples from 

EAE (n=13) and healthy mice (n=12) on day 17 from the prior EAE induction and treatment 

experiment (Figure 1b), healthy mice receiving Teklad global 16% protein rodent diet (days 5, 6, 

and 7, n=28, pellet only), healthy mice receiving the DietGel supplement (days 5, 6, and 7, n=30, 

DietGel supplement); (b) 2D PCA scores plot generated from the 1D 
1
H NMR spectra acquired 

for the urine samples collected on days 5, 6 and 7 from healthy mice fed with Teklad global 16% 

protein rodent diet (□), and healthy mice that received the DietGel supplement (○).The ellipse 

corresponds to the 95% confidence limit from a normal distribution for the DietGel supplement 

cluster. (c) 2D PCA scores plot for the urine samples collected from the healthy groups 

representing days 5, 6 and 7 or 17 that received food pellets and/or DietGel (■), and day 17 EAE 
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mice (♦). The 1D 
1
H NMR data from the prior EAE induction and treatment experiment were 

normalized to the 1D 
1
H NMR data from the diet control experiment to ensure the two-sets of 

healthy controls overlapped in the 2D PCA scores plot. The ellipses correspond to the 95% 

confidence limits from a normal distribution for each cluster. 
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