677 research outputs found

    D-Cbl Binding to Drk Leads to Dose-Dependent Down-Regulation of EGFR Signaling and Increases Receptor-Ligand Endocytosis

    Get PDF
    Proper control of Epidermal Growth Factor Receptor (EGFR) signaling is critical for normal development and regulated cell behaviors. Abnormal EGFR signaling is associated with tumorigenic process of various cancers. Complicated feedback networks control EGFR signaling through ligand production, and internalization-mediated destruction of ligand-receptor complexes. Previously, we found that two isoforms of D-Cbl, D-CblS and D-CblL, regulate EGFR signaling through distinct mechanisms. While D-CblL plays a crucial role in dose-dependent down-regulation of EGFR signaling, D-CblS acts in normal restriction of EGFR signaling and does not display dosage effect. Here, we determined the underlying molecular mechanism, and found that Drk facilitates the dose-dependent regulation of EGFR signaling through binding to the proline-rich motif of D-CblL, PR. Furthermore, the RING finger domain of D-CblL is essential for promoting endocytosis of the ligand-receptor complex. Interestingly, a fusion protein of the two essential domains of D-CblL, RING- PR, is sufficient to down-regulate EGFR signal in a dose-dependent manner by promoting internalization of the ligand, Gurken. Besides, RING-SH2Drk, a fusion protein of the RING finger domain of D-Cbl and the SH2 domain of Drk, also effectively down-regulates EGFR signaling in Drosophila follicle cells, and suppresses the effects of constitutively activated EGFR. The RING-SH2Drk suppresses EGFR signaling by promoting the endosomal trafficking of ligand-receptor complexes, suggesting that Drk plays a negative role in EGFR signaling by enhancing receptor endocytosis through cooperating with the RING domain of D-Cbl. Interfering the recruitment of signal transducer, Drk, to the receptor by the RING-SH2Drk might further reduces EGFR signaling. The fusion proteins we developed may provide alternative strategies for therapy of cancers caused by hyper-activation of EGFR signaling

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Inhibition of Proliferation and Induction of Apoptosis in Multiple Myeloma Cell Lines by CD137 Ligand Signaling

    Get PDF
    BACKGROUND: Multiple myeloma (MM) is a malignancy of terminally-differentiated plasma cells, and the second most prevalent blood cancer. At present there is no cure for MM, and the average prognosis is only three to five years. Current treatments such as chemotherapy are able to prolong a patient's life but rarely prevent relapse of the disease. Even hematopoietic stem cell transplants and novel drug combinations are often not curative, underscoring the need for a continued search for novel therapeutics. CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and TNF superfamilies, respectively. Since CD137 ligand cross-linking enhances proliferation and survival of healthy B cells we hypothesized that it would also act as a growth stimulus for B cell cancers. METHODOLOGY/PRINCIPAL FINDINGS: Proliferation and survival of B cell lymphoma cell lines were not affected or slightly enhanced by CD137 ligand agonists in vitro. But surprisingly, they had the opposite effects on MM cells, where CD137 ligand signals inhibited proliferation and induced cell death by apoptosis. Furthermore, secretion of the pro-inflammatory cytokines, IL-6 and IL-8 were also enhanced in MM but not in non-MM cell lines in response to CD137 ligand agonists. The secretion of these cytokines in response to CD137 ligand signaling was consistent with the observed activation of the classical NF-kappaB pathway. We hypothesize that the induction of this pathway results in activation-induced cell death, and that this is the underlying mechanism of CD137-induced MM cell death and growth arrest. CONCLUSIONS/SIGNIFICANCE: These data point to a hitherto unrecognized role of CD137 and CD137 ligand in MM cell biology. The selective inhibition of proliferation and induction of cell death in MM cells by CD137 ligand agonists may also warrant a closer evaluation of their therapeutic potential

    Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug

    Get PDF
    Although cancers are characterized by the deregulation of multiple signalling pathways, most current anticancer therapies involve the modulation of a single target. Because of the enormous biological diversity of cancer, strategic combination of agents targeted against the most critical of those alterations is needed. Due to their complex nature, plant products interact with numerous targets and influence several biochemical and molecular cascades. The interest in further development of botanical drugs has been increasing steadily and the FDA recently approved the first new botanical prescription drug. The present study is designed to explore the potential antileukemic properties of Hemidesmus indicus with a view to contributing to further development of botanical drugs. Hemidesmus was submitted to an extensive in vitro preclinical evaluation.A variety of cellular assays and flow cytometry, as well as a phytochemical screening, were performed on different leukemic cell lines. We have demonstrated that Hemidesmus modulated many components of intracellular signaling pathways involved in cell viability and proliferation and altered the protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential and increased Bax/Bcl-2 ratio. ADP, adenine nucleotide translocator and mitochondrial permeability transition pore inhibitors did not reverse Hemidesmus-induced mitochondrial depolarization. Hemidesmus induced a significant [Ca(2+)](i) raise through the mobilization of intracellular Ca(2+) stores. Moreover, Hemidesmus significantly enhanced the antitumor activity of three commonly used chemotherapeutic drugs (methotrexate, 6-thioguanine, cytarabine). A clinically relevant observation is that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemic patients.These results indicate the molecular basis of the antileukemic effects of Hemidesmus and identify the mitochondrial pathways and [Ca(2+)](i) as crucial actors in its anticancer activity. On these bases, we conclude that Hemidesmus can represent a valuable tool in the anticancer pharmacology, and should be considered for further investigations
    corecore