57 research outputs found

    First-principles molecular-dynamics simulations for neutral p-chloranil and its radical anion

    No full text
    APS copyright is acknowledged url = {http://link.aps.org/doi/10.1103/PhysRevB.53.12112}International audienceThe neutral p -chloranil ~ 2,3,5,6-tetrachloro- p -benzoquinone ! and its radical anion have been extensively studied using the Car-Parrinello projector augmented wave method, which is an all-electron electronic structure method for first-principles molecular dynamics based on the local density approximation of density functional theory. Frequencies and eigenmodes are derived by fitting a system of harmonic oscillators to the molecular- dynamics trajectories. The dependence of the bond lengths and vibrational frequencies on the molecular ionicity is discussed, and the electron affinity, Coulomb repulsion, and the spin-splitting parameter of p -chloranil are also derived

    Two-photon coherent control of femtosecond photoassociation

    Full text link
    Photoassociation with short laser pulses has been proposed as a technique to create ultracold ground state molecules. A broad-band excitation seems the natural choice to drive the series of excitation and deexcitation steps required to form a molecule in its vibronic ground state from two scattering atoms. First attempts at femtosecond photoassociation were, however, hampered by the requirement to eliminate the atomic excitation leading to trap depletion. On the other hand, molecular levels very close to the atomic transition are to be excited. The broad bandwidth of a femtosecond laser then appears to be rather an obstacle. To overcome the ostensible conflict of driving a narrow transition by a broad-band laser, we suggest a two-photon photoassociation scheme. In the weak-field regime, a spectral phase pattern can be employed to eliminate the atomic line. When the excitation is carried out by more than one photon, different pathways in the field can be interfered constructively or destructively. In the strong-field regime, a temporal phase can be applied to control dynamic Stark shifts. The atomic transition is suppressed by choosing a phase which keeps the levels out of resonance. We derive analytical solutions for atomic two-photon dark states in both the weak-field and strong-field regime. Two-photon excitation may thus pave the way toward coherent control of photoassociation. Ultimately, the success of such a scheme will depend on the details of the excited electronic states and transition dipole moments. We explore the possibility of two-photon femtosecond photoassociation for alkali and alkaline-earth metal dimers and present a detailed study for the example of calcium

    Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk

    Get PDF
    Aims High-density lipoproteins (HDLs) are considered as anti-atherogenic. Recent experimental findings suggest that their biological properties can be modified in certain clinical conditions by accumulation of serum amyloid A (SAA). The effect of SAA on the association between HDL-cholesterol (HDL-C) and cardiovascular outcome remains unknown. Methods and results We examined the association of SAA and HDL-C with mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, which included 3310 patients undergoing coronary angiography. To validate our findings, we analysed 1255 participants of the German Diabetes and Dialysis study (4D) and 4027 participants of the Cooperative Health Research in the Region of Augsburg (KORA) S4 study. In LURIC, SAA concentrations predicted all-cause and cardiovascular mortality. In patients with low SAA, higher HDL-C was associated with lower all-cause and cardiovascular mortality. In contrast, in patients with high SAA, higher HDL-C was associated with increased all-cause and cardiovascular mortality, indicating that SAA indeed modifies the beneficial properties of HDL. We complemented these clinical observations by in vitro experiments, in which SAA impaired vascular functions of HDL. We further derived a formula for the simple calculation of the amount of biologically ‘effective' HDL-C based on measured HDL-C and SAA from the LURIC study. In 4D and KORA S4 studies, we found that measured HDL-C was not associated with clinical outcomes, whereas calculated ‘effective' HDL-C significantly predicted better outcome. Conclusion The acute-phase protein SAA modifies the biological effects of HDL-C in several clinical conditions. The concomitant measurement of SAA is a simple, useful, and clinically applicable surrogate for the vascular functionality of HD

    Metabolite profiling reveals new insights into the regulation of serum urate in humans

    Get PDF
    Albrecht E, Waldenberger M, Krumsiek J, et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics. 2013;10(1):141-151.Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia

    Vagal control of the heart decreases during increasing imminence of interoceptive threat in patients with panic disorder and agoraphobia

    Get PDF
    Theoretically, panic disorder and agoraphobia pathology can be conceptualized as a cascade of dynamically changing defensive responses to threat cues from inside the body. Guided by this trans‑diagnostic model we tested the interaction between defensive activation and vagal control as a marker of prefrontal inhibition of subcortical defensive activation. We investigated ultra‑short‑term changes of vagally controlled high frequency heart rate variability (HRV) during a standardized threat challenge (entrapment) in n = 232 patients with panic disorder and agoraphobia, and its interaction with various indices of defensive activation. We found a strong inverse relationship between HRV and heart rate during threat, which was stronger at the beginning of exposure. Patients with a strong increase in heart rate showed a deactivation of prefrontal vagal control while patients showing less heart rate acceleration showed an increase in vagal control. Moreover, vagal control collapsed in case of imminent threat, i.e., when body symptoms increase and seem to get out of control. In these cases of defensive action patients either fled from the situation or experienced a panic attack. Active avoidance, panic attacks, and increased sympathetic arousal are associated with an inability to maintain vagal control over the heart suggesting that teaching such regulation strategies during exposure treatment might be helpful to keep prefrontal control, particularly during the transition zone from post‑encounter to circa strike defense

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Queer becoming as techno-ontogenetic Body Thinking

    No full text
    This article is about the potentiality of Queer Theory not as a tool to analyze and criticize power structures and their mechanisms with respect to sexualities, desire, sexual difference, binarized gender identities, and, finally heteronormativity. This kind of Theory is not to be seen as a way to reflect critically on something which is represented or discursively constructed either. Queer Theory, here, is a way of embodied thinking that has internalized the principles of queer as traversing the traditional ways of coherent thinking, of analysis, of representation, of linear narratives and causalities. In the course of its unfolding it actualizes two entities, biodigital composits and nanobots. Those two entities will already have modified on an abstract level the objects of its outcome: sexuality, gender, desire in an unprecedented way beyond oedipal constellations, heteronormative sexualities and gender identities. I call this process techno-ontogenetic queer becoming
    corecore