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Abstract Serum urate, the final breakdown product of

purine metabolism, is causally involved in the pathogenesis

of gout, and implicated in cardiovascular disease and type

2 diabetes. Serum urate levels highly differ between men

and women; however the underlying biological processes

in its regulation are still not completely understood and are

assumed to result from a complex interplay between

genetic, environmental and lifestyle factors. In order to

describe the metabolic vicinity of serum urate, we analyzed

355 metabolites in 1,764 individuals of the population-

based KORA F4 study and constructed a metabolite net-

work around serum urate using Gaussian Graphical Mod-

eling in a hypothesis-free approach. We subsequently

investigated the effect of sex and urate lowering

medication on all 38 metabolites assigned to the network.

Within the resulting network three main clusters could be

detected around urate, including the well-known pathway

of purine metabolism, as well as several dipeptides, a group

of essential amino acids, and a group of steroids. Of the 38

assigned metabolites, 25 showed strong differences

between sexes. Association with uricostatic medication

intake was not only confined to purine metabolism but seen

for seven metabolites within the network. Our findings

highlight pathways that are important in the regulation of

serum urate and suggest that dipeptides, amino acids, and

steroid hormones are playing a role in its regulation. The

findings might have an impact on the development of

specific targets in the treatment and prevention of

hyperuricemia.
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1 Introduction

Since the early 1800s, hyperuricemia is known to be causally

involved in the pathogenesis of gout, a painful inflammatory

arthritis induced by the deposition of monosodium urate

crystals in synovial fluid and other tissues (Kanbay et al.

2011; Neogi 2011). Increased serum urate concentrations

are implicated in cardiovascular disease and elevated urate is

associated with obesity, hypertension and insulin resistance,

and consequently with the metabolic syndrome and type 2

diabetes (Hayden and Tyagi 2004; Koenig and Meisinger

2008). By contrast, the relatively high serum urate levels of

humans compared to most other mammals are believed to

play a positive role as an antioxidant (Wu et al. 2011). Thus,

human physiology is especially sensitive to the precise range

of serum urate levels.

In humans and higher primates, who have lost hepatic

uricase activity during evolution, serum urate is the final

oxidation product of purine metabolism. Serum urate is

produced by xanthine oxidase from xanthine and hypo-

xanthine and is excreted in urine by the proximal tubular

cells of the kidney. The regulation of serum urate con-

centrations is regarded as a result of complex interplays

between genetic, lifestyle, and environmental factors.

Recently, genome-wide association studies (GWAS) have

identified single nucleotide polymorphisms (SNPs) asso-

ciated with serum urate concentrations and gout, several of

them located in genes coding for renal transport proteins

(Doring et al. 2008; Kolz et al. 2009; Kottgen et al. 2013;

Li et al. 2007; Vitart et al. 2008; Wallace et al. 2008; Yang

et al. 2010). However, despite the success of these GWAS,

detailed functional information on the underlying biologi-

cal processes is still lacking.

Metabolomics, the study of ideally all metabolites in a

biological system, is one of the youngest of the ‘‘omics’’

sciences. Metabolites are the end products of cellular reg-

ulatory processes and may provide more details on poten-

tially affected biological pathways (Ma et al. 2012). The

detection and functional characterization of such pathways

is crucial to improve management and treatment of patients

with hyperuricemia and gout.

In order to investigate the metabolic vicinity of serum

urate, we performed metabolite profiling of 1,764 indi-

viduals of the KORA F4 survey and examined serum urate

connected metabolites using Gaussian Graphical Models

(GGMs). In previous studies, we have demonstrated these

statistical models to reconstruct metabolic pathways from

large-scale metabolomics data (Krumsiek et al. 2011). To

address the pronounced sex differences in the regulation of

serum urate concentrations we analyzed sex differences

within the network. Additionally, we analyzed the influ-

ence of urate lowering medication for all metabolites

within the generated network.

2 Materials and methods

2.1 Study population

The KORA studies (Cooperative Health Research in the

Region of Augsburg) is a series of independent population

based studies from the general population living in the
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region of Augsburg, southern Germany (Holle et al. 2005;

Wichmann et al. 2005). The KORA S4 survey, was con-

ducted in 1999–2001 including 4,261 participants

(response 67 %). A total of 3,080 subjects participated in

the follow-up examination KORA F4 in 2006–2008. The

present analysis comprises 1,764 KORA F4 participants

(908 females and 856 males) in an age range of

32–81 years (mean 60.86 years). Of those, 83 participants

were treated by urate lowering medication (17 females and

66 males). All 83 were treated by allopurinol (uricostatic

drug) and four of them additionally by benzbromaron

(uricosuric drug). Written informed consent has been given

by all participants and the study has been approved by the

Ethics Committee of the Bavarian Medical Association.

2.2 Blood sampling

Blood samples were collected as part of the KORA F4

follow-up. To avoid variation due to circadian rhythm,

blood was drawn in the morning between 08:00 and 10:30

after a period of at least 10 h overnight fasting. Material

was drawn into serum gel tubes, gently inverted twice and

then allowed to rest for 30 min at room temperature

(18–25 �C) to obtain complete coagulation. The material

was then centrifuged for 10 min (2,750 g at 15 �C). Serum

was divided into aliquots and kept for a maximum of 6 h at

4 �C, after which it was frozen at -80 �C until analysis.

2.3 Metabolomics measurements

Metabolites were measured in 1,768 subjects from the

KORA F4 study by Metabolon, Inc. (Durham, NC, USA), a

commercial supplier of metabolic analyses, who has

developed a platform that integrates the chemical analysis,

including identification and relative quantification, data-

reduction and quality-assurance using three separate ana-

lytical methods (GC–MS, LC–MS (positive mode), LC–

MS (negative mode)) to detect as wide a range of metab-

olites as possible (Evans et al. 2009; Suhre et al. 2011).

Sample preparation was assisted by a Hamilton ML

STAR (Hamilton Company, Salt Lake City, UT, USA)

robotics system. After thawing, 400 ll of extraction sol-

vent (i.e. methanol, containing recovery standards) was

added to each 100 ll of serum samples in a 96 deep well

plate format. Extraction was carried out by shaking for

2 min using a Geno/Grinder 2000 (Glen Mills Inc., Clifton,

NJ, USA). After centrifugation the supernatant was split

into four aliquots: two for LC/MS analysis (positive and

negative electrospray ionization mode), one for GC/MS

analysis and one reserve aliquot. Solvent was removed on a

TurboVap (Zymark) and the samples were dried under

vacuum overnight. For LC/MS pos. ion mode samples were

reconstituted with 0.1 % formic acid, for neg. ion mode

with 6.5 mM ammonium bicarbonate pH 8.0. Both recon-

stitution solvents contained also internal standards. The

GC/MS aliquots were derivatized for 1 h at 60 �C with

N,O-bistrimethylsilyl-trifluoroacetamide in a solvent mix-

ture of acetonitrile:dichlormethane:cyclohexane (5:4:1),

containing 5 % triethylamine and retention time markers.

LC/MS analysis was performed on a LTQ mass spec-

trometer (Thermo Fisher Scientific Inc., Waltham, MA,

USA) equipped with a Waters Acquity UPLC system

(Waters Corporation, Milford, MA, USA). Two separate

columns (2.1 9 100 mm Waters BEH C18 1.7 lm parti-

cle) were used for acidic (solvent A: 0.1 % formic acid in

H2O, solvent B: 0.1 % formic acid in methanol) and basic

(A: 6.5 mM ammonium bicarbonate pH 8.0, B: 6.5 mM

ammonium bicarbonate in 98 % methanol) mobile phase

conditions, optimized for positive and negative electro-

spray ionization, respectively. After injection of the sample

extracts the columns were developed in a gradient of

100 % A to 98 % B in 11 min runtime at 350 ll/min flow

rate. The eluent flow was directly connected to the ESI

source of the LTQ mass spectrometer. Full scan mass

spectra (99–1000 m/z) and data dependent MS/MS scans

with dynamic exclusion were recorded in turns.

GC/MS analysis was done on a Thermo-Finnigan Trace

DSQ fast-scanning single-quadrupole mass spectrometer,

equipped with a 20 m 9 0.18 mm GC column with

0.18 lm film phase consisting of 5 % phenyldimethyl sil-

icone. Electron impact ionization at 70 eV was used and

the column temperature was ramped between 60 and

340 �C with helium as carrier gas. Mass spectra in a scan

range from 50 to 750 m/z, were recorded.

Metabolites were identified from the LC/MS and GC/

MS data by automated multiparametric comparison with a

proprietary library, containing retention times, m/z ratios,

and related adduct/fragment spectra for over 1,500 standard

compounds measured by Metabolon. For each identified

metabolite the raw area counts were normalized to the

median value of the run day to correct for inter-day vari-

ation of the measurements.

The panel includes 517 untargeted metabolites, spanning

several metabolic classes (amino acids, acylcarnitines,

sphingomyelins, glycerophospholipids, carbohydrates, vita-

mins, lipids, nucleotides, peptides, xenobiotics and steroids).

The quantified metabolites can be distinguished into chemi-

cally identified metabolites, and unidentified, here called

‘‘unknown’’ metabolites. Nine of those unknown metabolites

have recently been identified by Krumsiek et al. (2012). Urate

is one of the measured metabolites on the panel.

From the original data matrix containing 1,768 samples

and 517 metabolites, we first excluded metabolites with

more than 20 % missing values and then samples with more

than 10 % missing values. The filtered data matrix contained

n = 1,764 samples and 355 metabolites (241 known and
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114 unknown). All normalized ion counts were transformed

by natural logarithm and missing values were imputed using

the ‘mice’ R package (van Buuren and Groothuis-Oudsho-

orn 2011). Detailed information about all analyzed metab-

olites is provided in Supplementary Table 1.

2.4 Identification of the unknown metabolite X-11422

Within the generated GGM xanthine was not directly

connected to urate and hypoxanthine but via the unknown

metabolite X-11422 (see Supplementary Fig. 1). The cen-

tral position of X-11422 in this well-known pathway

induced speculations about its chemical identity. Following

the ideas for unknown identification in Krumsiek et al.

(2012), we defined possible candidates by considering the

direct neighbors of X-11422 in the GGM, its mass, and its

fragmentation spectrum: alloxanthine, the primary metab-

olite of allopurinol, or xanthine itself displaying altered

chromatographic characteristics. Xanthine was originally

measured and identified on two out of the three analytical

methods used to profile metabolites. Interestingly, xanthine

was not detected on the third platform; rather X-11422 was

detected. In order to determine if the unknown could be

either one of these candidates, we performed a co-elution

spiking experiment. We spiked several candidate mole-

cules, including xanthine and alloxanthine, that had the

same molecular formula (as determined by accurate mass

spectrometric analysis using an Orbitrap Elite mass spec-

trometer operated at 30,000 resolution) and fragmentation

spectrum when run neat, into both urate medication treated

and non-treated patient samples. Specifically, treated and

non-treated medication samples were run with no spike,

low, medium, and high spikes of both xanthine and allo-

xanthine separately, as well as spiked with both molecules

simultaneously, to determine if either candidate co-eluted

with the peak identified as X-11422. Positive confirmation

of identity of X-11422, given the candidates already dis-

played identical molecular formula and fragmentation

spectrum, would show an exact co-elution of the candidate

molecules with the unknown in the treated samples.

This experiment demonstrated that xanthine, not allo-

xanthine, co-eluted perfectly in this matrix with the peak

identified as X-11422 and therefore X-11422 represented an

alternate measurement of xanthine. The original measure-

ment of xanthine and the alternate measurement of xanthine

(X-11422) correlate with a Pearson Correlation of r = 0.60

and show highly similar response to treatment. It is inter-

esting to note that the alternate measurement of xanthine

showed an increased correlation to the treatment as opposed

to the original measurement. Since these two measurements

are occurring on two different analytical methods with dif-

ferent background and chemical noise characteristics, slight

differences in relative quantitation is not surprising.

2.5 Medication ascertainment

All participants were asked to bring to the interview all

medications taken in the 7 days preceding the examination.

Medication data was obtained online using the IDOM

program (online drug-database leaded medication assess-

ment). The medications were categorized according to the

Anatomical Therapeutical Chemical (ATC) classification

index.

2.6 Statistical analysis

Within the original data matrix of 355 metabolites, partial

correlations were calculated between each metabolite pair

conditioning on age, sex, all other metabolites as well as

SNPs which showed a significant association with at least

one of the 355 known or unknown metabolites as described

before (Krumsiek et al. 2012). Correlations between two

metabolites were considered to be significant at a signifi-

cance level of 0.05 and a correction for multiple testing by

the false discovery rate (FDR) (Benjamini and Hochberg

1995; Benjamini and Yekutieli 2001). Significant partial

correlations were visualized in a network graph, referred to

a Gaussian graphical model (GGM). In previous studies,

we have demonstrated that GGMs are able to reconstruct

metabolic pathways from large-scale metabolomics data

(Krumsiek et al. 2012, 2011). Within the GGM each node

presents a metabolite and nodes are connected by an edge if

their partial correlation is significant. Here, we visualize

the network in a 3-neighborhood around urate, which

means that all metabolites are assigned to the network

graph if they are connected to urate by three or less edges.

The initially generated network is visualized in Sup-

plementary Fig. 1. As the unknown metabolite X-11422

was located at a central position within the known purine

pathway, we investigated on its identification as described

above and identified it to be an alternate measurement of

xanthine. In order to avoid duplicated metabolites within

the graph, we removed known duplicates from the data-

matrix and regenerated the GGM in the remaining 353

metabolites. The FDR corrected significance level of 0.05

involved a p value cutoff of 4.34 9 10-5. All metabolites

within the network were tested for their associations with

sex and urate lowering medication using a linear model

which was additionally adjusted for age. Effects were

considered to be significant below a threshold of

6.6 9 10-4, which corresponds to a Bonferroni correction

for 76 independent tests.

Furthermore, we tested all pairwise partial correlations

within the set of 353 metabolites for sex differences. Partial

correlation coefficients were calculated separately in males

and females. In contrary to the overall coefficients, we did

not adjust for the set of SNPs in order to ensure a reliable
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Table 1 Partial correlation

coefficients for all significant

associations within a

3-neighborhood of serum urate

Metabolite 1 Metabolite 2 Partial correlation

coefficient

p value

Urate Histidine -0.231 9.08E-13

Urate Methionine 0.181 2.54E-08

Urate N-[3-(2-oxopyrrolidin-1-yl)

propyl]acetamide

0.142 1.37E-05

Urate Androstene disulfate 0.153 2.52E-06

Urate Xanthine -0.277 5.27E-18

Histidine Methionine 0.188 7.06E-09

Methionine Tyrosine 0.142 1.32E-05

Androstene disulfate Dehydroepiandrosterone sulfate 0.351 1.40E-28

Androstene disulfate Epiandrosterone sulfate -0.176 5.38E-08

Androstene disulfate X-18601 0.146 7.54E-06

Androstene disulfate X-11440 0.352 1.13E-28

Androstene disulfate X-11443 0.510 3.16E-63

Androstene disulfate X-11450 0.156 1.60E-06

Xanthine Aspartylphenylalanine 0.147 6.10E-06

Xanthine Hypoxanthine 0.185 1.20E-08

Xanthine N-[3-(2-oxopyrrolidin-1-yl)

propyl]acetamide

0.140 1.68E-05

Tyrosine 2-hydroxybutyrate -0.138 2.35E-05

Tyrosine 3-(4-hydroxyphenyl)lactate 0.319 1.37E-23

Tyrosine Caffeine 0.136 2.91E-05

Tyrosine Citrate -0.138 2.24E-05

Tyrosine Gamma-glutamyltyrosine 0.466 1.04E-51

Tyrosine Phenylalanine 0.201 5.44E-10

Tyrosine Tryptophan 0.268 7.02E-17

Dehydroepiandrosterone

sulfate

Epiandrosterone sulfate 0.299 8.64E-21

Dehydroepiandrosterone

sulfate

X-18601 0.574 3.66E-83

Dehydroepiandrosterone

sulfate

X-11315 0.141 1.47E-05

Dehydroepiandrosterone

sulfate

X-11443 -0.470 1.32E-52

Dehydroepiandrosterone

sulfate

X-11450 0.392 8.38E-36

Dehydroepiandrosterone

sulfate

X-12063 -0.193 2.51E-09

Dehydroepiandrosterone

sulfate

X-12844 0.138 2.10E-05

Epiandrosterone sulfate Androsterone sulfate 0.754 1.33E-172

Epiandrosterone sulfate X-11440 -0.178 3.93E-08

Epiandrosterone sulfate X-11443 0.411 1.48E-39

Epiandrosterone sulfate X-12844 0.161 6.94E-07

X-18601 Taurolithocholate 3-sulfate -0.134 4.04E-05

X-18601 X-12063 0.208 1.28E-10

X-18601 X-12844 -0.162 6.47E-07

X-11440 X-11445 0.314 7.74E-23

X-11440 X-11450 0.150 4.05E-06

X-11440 X-11470 0.140 1.75E-05
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estimation within these reduced sample sets. The male- and

female-specific partial correlation coefficients were com-

pared using a Fisher test (Levy and Narula 1978).

To compare the 58 edges within the generated urate

GGM, a Bonferroni corrected significance level of 0.05/

58 = 8.6 9 10-4 was applied. To test differences between

all possible pairs of 353 metabolites, a Bonferroni cor-

rected significance level of 0.05/62,128 = 8.0 9 10-7 was

applied.

3 Results and discussion

In a hypothesis-free approach, we generated a data-driven

GGM around serum urate, based on partial correlations.

Thereby, 38 metabolites were assigned to a network, con-

taining 26 known as well as 12 unknown metabolites

(Fig. 1). Table 1 shows the corresponding partial correla-

tion coefficients and p values for each of the edges within

the network. The general structure of the serum urate

network clusters into three parts of connected metabolites.

The first cluster contains mainly nucleotides, namely

xanthine, hypoxanthine, inosine, and uridine, as well as

arginine, and two unknown metabolites. It includes the

well-known pathway from inosine via hypoxanthine and

xanthine to urate. Xanthine is further connected to a cluster

of dipeptides, namely aspartyl-phenylalanine (aspartame),

leucylalanine, phenylalanylphenylalanine, and phenylala-

nylleucine and one unknown metabolite X-11805. The

conversion of hypoxanthine to xanthine and xanthine to

urate is catalyzed by the rate-limiting enzyme xanthine

oxidase, the only enzyme capable of catalyzing the for-

mation of urate in man (Pfeffer et al. 1994). The complex

mechanism by which xanthine oxidase catalyzes hypo-

xanthine and xanthine conversion has been described pre-

viously (Berry and Hare 2004; Hille and Massey 1981).

Xanthine oxidase is significantly elevated in a variety of

cardiovascular conditions such as coronary artery disease

and heart failure (George and Struthers 2009). There is a

large variability in human xanthine oxidase expression,

which can be up to three-fold and on average 20 % higher

in men than in women (Guerciolini et al. 1991). Although

basal expression of xanthine oxidase is low in humans,

hypoxias, IL-1, IL-6, TNF-a, lipo-polysaccharides as well

as steroid treatment have been shown to up-regulate tran-

scription (Berry and Hare 2004).

Aspartyl-phenylalanine (aspartame), a low-calorie

sweetener, is directly connected to xanthine in the network.

Aspartame was shown to pose antipyretic, analgesic and

anti-inflammatory action and to delay osteoarthritis in

animal models (LaBuda and Fuchs 2001; Manion et al.

2011; Pradhan et al. 2011). Interference of aspartame with

rheumatoid factor activity has been proposed to alleviate

the pain and immobility resulting from chronic inflamma-

tion of joints (Ramsland et al. 1999). Other (tryptophan-

containing) dipeptides were shown to inhibit xanthine

oxidase (Nongonierma and Fitzgerald 2012). The dipep-

tides connected to xanthine may therefore be interesting

Table 1 continued
Metabolite 1 Metabolite 2 Partial correlation

coefficient

p value

X-11440 X-12844 0.192 3.03E-09

X-11443 X-11450 0.213 4.88E-11

X-11443 X-12844 -0.155 2.00E-06

Aspartylphenylalanine X-11805 0.256 1.85E-15

Aspartylphenylalanine Leucylalanine 0.308 4.78E-22

Aspartylphenylalanine Phenylalanylleucine 0.393 5.02E-36

Aspartylphenylalanine Phenylalanylphenylalanine 0.155 1.94E-06

Hypoxanthine Arginine 0.137 2.45E-05

Hypoxanthine Inosine 0.254 3.05E-15

Hypoxanthine Uridine 0.152 2.80E-06

Hypoxanthine X-10810 0.162 6.03E-07

Hypoxanthine X-12442 -0.140 1.80E-05

3-(4-hydroxyphenyl)lactate Citrate 0.142 1.28E-05

X-11805 Phenylalanylleucine 0.142 1.36E-05

X-11805 Phenylalanylphenylalanine 0.342 4.55E-27

Leucylalanine Phenylalanylleucine -0.143 1.04E-05

Leucylalanine Phenylalanylphenylalanine -0.164 4.17E-07

Phenylalanylleucine Phenylalanylphenylalanine 0.155 1.86E-06

146 E. Albrecht et al.

123



targets for the identification of novel treatments or pre-

vention strategies for hyperuricemia and related diseases.

Urate and xanthine are further connected to N-[3-(2-

oxopyrrolidin-1-yl)propyl]acetamide (acisoga), a metabo-

lite of spermidine. Our metabolite network does not pro-

vide the first link between urate and spermidine.

Spermidine and spermine were previously found to bind

the organic anion transporter OAT1 in mice, and to be

putative novel endogenous substrates of OAT1 (Ahn et al.

2011), which is also known to be a urate transporter (Ichida

et al. 2003).

The second large cluster contains several essential

amino acids and is connected via methionine and histidine

to serum urate in our network. Histidine, tryptophan, and

tyrosine are amino acids which are especially sensitive to

hydroxyl radical exposure (Davies et al. 1987). Methionine

enriched diet is known to decrease urate levels in chickens

and ducks, whereas only a few small studies have analyzed

the effect in humans (Xie et al. 2004). Furthermore,

methionine can be demethylated to homocysteine and

elevated homocysteine levels have, as well as elevated

urate levels, been shown being a risk factor for athero-

sclerosis, coronary heart disease, and chronic kidney dis-

ease (Francis et al. 2004; Humphrey et al. 2008;

Lubomirova et al. 2007). Significant associations between

serum urate and homocysteine have been shown in plasma

and serum (Lussier-Cacan et al. 1996; Malinow et al.

1995).

Fig. 1 Serum urate GGM representing all significant associations

within a three-neighborhood of serum urate. The thickness of each

edge corresponds to the strength of partial correlation. Positive

associations are marked as black lines, whereas negative correlations

are represented by red lines. Metabolites are colored according to

their biological pathways
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The third cluster correlated with serum urate is com-

posed of steroids and several unknowns. The different

concentrations of serum urate in both sexes and the higher

incidence of gout in men compared to women, suggest a

hormonal influence on the pathogenesis of gout (Gregolini

et al. 1983). Excretion of urinary dehydroepiandrosterone

and androsterone has been reported to be significantly

lower in subjects with gout (Sparagana and Phillips 1972).

A small study investigating the hormonal urinary excretion

reported that patients previously treated with allopurinol

showed slightly higher values of androsterone and dehy-

droepiandrosterone, and slightly lower values of 11-hy-

droxyandrosterone in comparison to normal subjects,

suggesting different hormonal patterns between individuals

with and without gout (Gregolini et al. 1983).

For all metabolites within the network we tested the

influence of sex and urate lowering medication within a linear

model. Table 2 shows the corresponding effect estimates.

Table 2 Influence of sex and

urate lowering medication on

levels of all metabolites within

the 3-neighborhood of serum

urate

The linear model was

additionally adjusted for age

(effects not shown). Males are

coded 0, females are coded 1.

Medication intake was coded

with 1 compared to no

medication intake 0

Metabolite Beta

sex

p value

sex

Beta

medication

p value

medication

2-Hydroxybutyrate -0.108 1.16E-08 -0.169 1.75E-04

3-(4-Hydroxyphenyl)lactate -0.340 1.81E-90 -0.175 4.10E-06

Androstene disulfate -0.817 8.78E-103 -0.226 7.40E-03

Androsterone sulfate -0.360 7.86E-23 0.092 2.84E-01

Arginine 0.019 1.05E-01 0.056 4.03E-02

Aspartylphenylalanine -0.034 2.68E-01 -0.169 2.16E-02

Caffeine -0.074 1.28E-01 -0.605 2.17E-07

Citrate 0.029 2.14E-02 -0.055 7.26E-02

Dehydroepiandrosterone sulfate -0.436 1.85E-49 0.195 4.08E-03

Epiandrosterone sulfate -0.518 6.28E-59 0.141 5.36E-02

Gamma-glutamyltyrosine -0.091 2.71E-16 -0.076 3.53E-03

Histidine 0.032 5.29E-07 0.006 6.79E-01

Hypoxanthine 0.056 7.45E-05 -0.100 2.75E-03

Inosine 0.226 4.74E-09 0.034 7.12E-01

Leucylalanine 0.130 8.71E-08 0.117 4.12E-02

Methionine -0.110 3.91E-52 0.054 1.35E-03

N-[3-(2-oxopyrrolidin-1-yl)

propyl]acetamide

-0.026 1.11E-01 -0.275 3.46E-12

Phenylalanine -0.056 1.69E-19 -0.076 1.92E-07

Phenylalanylleucine -0.086 1.56E-03 -0.177 6.08E-03

Phenylalanylphenylalanine -0.004 8.67E-01 -0.107 4.43E-02

Taurolithocholate 3-sulfate -0.002 9.61E-01 -0.249 2.94E-03

Tryptophan -0.080 2.99E-32 -0.036 2.16E-02

Tyrosine -0.060 3.37E-12 -0.041 4.07E-02

Urate -0.206 1.20E-112 0.027 1.78E-01

Uridine 0.009 3.42E-01 0.054 1.95E-02

Xanthine 0.059 3.66E-06 -0.896 7.08E-157

X-10810 -0.061 3.60E-03 0.058 2.43E-01

X-11315 0.151 1.40E-13 0.048 3.17E-01

X-11440 -0.600 3.04E-90 -0.069 3.03E-01

X-11443 -1.247 8.12E-196 -0.166 5.58E-02

X-11445 -0.081 1.32E-02 0.019 8.09E-01

X-11450 -0.512 1.61E-88 -0.049 3.97E-01

X-11470 -0.158 1.33E-17 0.102 1.94E-02

X-11805 -0.044 1.92E-01 -0.363 6.51E-06

X-12063 -0.207 1.14E-12 -0.207 2.69E-03

X-12442 0.126 8.04E-08 -0.093 9.24E-02

X-12844 0.030 1.01E-01 0.087 4.39E-02

X-18601 -0.550 2.13E-71 0.134 5.55E-02
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25 of the 38 metabolites show strong differences between men

and women (7.5 9 10-5 C p C 8.1 9 10-196). These large

differences are in line with our previous work on sexual

dimorphisms revealing significant concentration differences

between males and females for 102 out of 131 metabolites

(Mittelstrass et al. 2011).

While the metabolites within the network expectedly

show strong sex differences, we observe that the network

itself is not sensitive to sex differences. To address this we

compared all partial correlations within the network

between men and women (Supplementary Table 2). Only

eight of the 58 edges show a significant difference between

men and women at a significance level of 8.6 9 10-4.

Furthermore, we compared all pairwise partial correlations

within the whole dataset of 353 metabolites. This global

comparison shows that there are three edges below the

significance level of 8.0 9 10-7 proving that there are no

strong sex differences, which means that the network itself

is not sex dependent.

Seven of the metabolites show a significant influence of

urate lowering medication. The strongest influence of medi-

cation intake is seen for xanthine (p = 7.1 9 10-157). Fur-

thermore, medication shows a significant influence on

phenylalanine (p = 1.9 9 10-7), caffeine (p = 2.2 9

10-7), 3-(4-hydroxyphenyl)lactate (p = 4.1 9 10-6),

2-hydroxybutyrate (p = 1.7 9 10-4), N-[3-(2-oxopyrroli-

din-1-yl)propyl]acetamide (p = 3.5 9 10-12), and X-11805

(p = 6.5 9 10-6). Allopurinol intake inhibits the enzyme

xanthine oxidase which is responsible for the successive

oxidation of hypoxanthine to xanthine and xanthine to urate.

Figure 2 visualizes the medication and sex effects for urate,

xanthine, and hypoxanthine. Urate levels themselves do not

show differences between medicated and medication-free

individuals (p = 0.18) and also for hypoxanthine the influ-

ence of medication is much weaker than on xanthine and not

significant after correcting for multiple testing (p = 2.7 9

10-3). While the strong association between allopurinol

intake and xanthine was expected, we additionally observed a

medication influence on several amino acids, one unknown

metabolite, and caffeine. Previous epidemiological studies

found that coffee consumption is inversely associated with

serum urate levels (Choi and Curhan 2007) and an influence of

allopurinol medication on caffeine has been described (Birkett

et al. 1997; Fuchs et al. 1999). Data on nutrition was not

available, therefore we cannot exclude the possibility that the

observed associations might be confounded by diet factors

especially by those typically recommended for patients with

gout.

4 Concluding remarks

Metabolomic research has been expanded to epidemio-

logical studies with the advent of new high-throughput

technologies. Because of their immediacy to cell physiol-

ogy, the measurement of metabolites provides a promising

technique to discover new disease markers and pathways.

We have generated a data-driven metabolite network

around serum urate based on metabolite profiling of 1,764

individuals of the KORA F4 survey, to reconstruct path-

ways of biochemically related metabolites in a hypothesis-

free approach.

We linked the regulation of serum urate to three dif-

ferent clusters of metabolites: While the connection to

purine metabolism is well known, our current approach

also links it to several essential amino acids and steroid

hormones. We see sex differences for 25 of the 38

metabolites within the network. Furthermore, metabolites

showed a dependency on uricostatic medication. Our

findings may advert to new regulatory pathways and
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Fig. 2 Levels of urate, xanthine, and hypoxanthine stratified between

females and males as well as stratified between �M = medication-free

and M = medicated individuals. Medication-free females: n = 891,

medicated females: n = 17, medication-free males: n = 790, and

medicated males: n = 66)
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molecular mechanisms. This opens up new avenues for the

identification of novel treatment targets and the prevention

of hyperuricemia and related diseases as gout, cardiovas-

cular disease and type 2 diabetes.
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