173 research outputs found
Climatic effects on sugarcane ripening under the influence of cultivars and crop age
The lack of information about the effects of cultivars, crop age and climate on the sugarcane (Saccharum ssp.) crop yield and quality has been the primary factor impacting the sugar-ethanol sector in Brazil. One of the processes about which we do not have a satisfactory understanding is sugarcane ripening and the effects of cultivars, crop age and climate on that. Sugarcane ripening is the process of sucrose accumulation in stalks, which is heavily influenced by several factors, mainly by climatic conditions such as air temperature and water deficits. Because it is a complex process, studies of the variables involved in sugarcane ripening can provide important information, resulting in a better use of commercial cultivars, bringing advantages to growers, processing units, breeding programs and scientific community. In this review, we discuss the available knowledge of the interaction between climate conditions and sugarcane ripening, under the influence of genotypic characteristics and crop age. In several studies, the main conclusion is that sugarcane ripening depends on a complex combination of climate variables, the genetic potential of cultivars and crop management. Soil moisture and air temperature are the primary variables involved in sugarcane ripening, and their combination stimulates the intensity of the process. In addition, the need for studies integrating the effects of climate on plant physiological processes and on the use of chemical agents to stimulate sugarcane ripening is highlighted
The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)
The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora
AgMIP-Wheat multi-model simulations on climate change impact and adaptation for global wheat, SDATA-20-01059
The climate change impact and adaptation simulations from the Agricultural Model Intercomparison and Improvement Project (AgMIP) for wheat provide a unique dataset of multi-model ensemble simulations for 60 representative global locations covering all global wheat mega environments. The multi-model ensemble reported here has been thoroughly benchmarked against a large number of experimental data, including different locations, growing season temperatures, atmospheric CO2 concentration, heat stress scenarios, and their interactions. In this paper, we describe the main characteristics of this global simulation dataset. Detailed cultivar, crop management, and soil datasets were compiled for all locations to drive 32 wheat growth models. The dataset consists of 30-year simulated data including 25 output variables for nine climate scenarios, including Baseline (1980-2010) with 360 or 550 ppm CO2, Baseline +2oC or +4oC with 360 or 550 ppm CO2, a mid-century climate change scenario (RCP8.5, 571 ppm CO2), and 1.5°C (423 ppm CO2) and 2.0oC (487 ppm CO2) warming above the pre-industrial period (HAPPI). This global simulation dataset can be used as a benchmark from a well-tested multi-model ensemble in future analyses of global wheat. Also, resource use efficiency (e.g., for radiation, water, and nitrogen use) and uncertainty analyses under different climate scenarios can be explored at different scales. The DOI for the dataset is 10.5281/zenodo.4027033 (AgMIP-Wheat, 2020), and all the data are available on the data repository of Zenodo (doi: 10.5281/zenodo.4027033).Two scientific publications have been published based on some of these data here
Orthogonalities and functional equations
In this survey we show how various notions of orthogonality appear in the theory of functional equations. After introducing some orthogonality relations, we give examples of functional equations postulated for orthogonal vectors only. We show their solutions as well as some applications. Then we discuss the problem of stability of some of them considering various aspects of the problem. In the sequel, we mention the orthogonality equation and the problem of preserving orthogonality. Last, but not least, in addition to presenting results, we state some open problems concerning these topics. Taking into account the big amount of results concerning functional equations postulated for orthogonal vectors which have appeared in the literature during the last decades, we restrict ourselves to the most classical equations
Volume I. Introduction to DUNE
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
International audienceMeasurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of missing energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours
Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
- …
