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Abstract: The climate change impact and adaptation simulations from the Agricultural Model 
Intercomparison and Improvement Project (AgMIP) for wheat provide a unique dataset of multi-model 
ensemble simulations for 60 representative global locations covering all global wheat mega 
environments. The multi-model ensemble reported here has been thoroughly benchmarked against a 
large number of experimental data, including different locations, growing season temperatures, 
atmospheric CO2 concentration, heat stress scenarios, and their interactions. In this paper, we describe 
the main characteristics of this global simulation dataset. Detailed cultivar, crop management, and soil 
datasets were compiled for all locations to drive 32 wheat growth models. The dataset consists of 30-
year simulated data including 25 output variables for nine climate scenarios, including Baseline (1980-
2010) with 360 or 550 ppm CO2, Baseline +2oC or +4oC with 360 or 550 ppm CO2, a mid-century climate 
change scenario (RCP8.5, 571 ppm CO2), and 1.5°C (423 ppm CO2) and 2.0oC (487 ppm CO2) warming 
above the pre-industrial period (HAPPI). This global simulation dataset can be used as a benchmark 
from a well-tested multi-model ensemble in future analyses of global wheat. Also, resource use 
efficiency (e.g., for radiation, water, and nitrogen use) and uncertainty analyses under different climate 
scenarios can be explored at different scales. The DOI for the dataset is 10.5281/zenodo.4027033 
(AgMIP-Wheat, 2020), and all the data are available on the data repository of Zenodo (doi: 
10.5281/zenodo.4027033). Two scientific publications have been published based on some of these data 
here. 

Keywords: wheat, CO2, carbon dioxide, climate change, climate change scenario, multi-model 
ensemble, future crop yields, crop growth modeling. 

1 BACKGROUND: As one of the largest staple crops, wheat (Triticum aestivum L.) plays an important 
role in ensuring global food security. Global wheat production, which covers tremendously diverse 
environments, is facing unprecedented climate change challenges (Lobell et al., 2011). Quantifying 
potential climate change impacts on global and regional crop production (including quantity and quality) 

mailto:pierre.martre@inrae.fr
mailto:yanzhu@njau.edu.cn
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accurately can provide valuable support for policy-making in mitigating climate change and for adapting 
local wheat production for future scenarios (IPCC, 2014).  
Daily wheat development and growth dynamic at 60 global locations during a 30-year period were 
simulated as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP; 
Rosenzweig et al., 2013) for wheat under different climate change scenarios with 32 wheat growth 
models. The multi-model ensemble reported here has been thoroughly benchmarked against a large 
number of experimental data, including different locations, growing season temperatures, atmospheric 
CO2 concentration, heat stress scenarios, and their interactions (Asseng et al., 2015; Asseng et al., 
2013; Asseng et al., 2019; Martre et al., 2015). The 60 global locations covered contrasting conditions 
across all global wheat mega environments and included 30 high-rainfall or irrigated wheat-growing 
locations and 30 low-rainfall wheat-growing locations (Reynolds and Braun, 2013). Each location 
represents an important wheat-growing area worldwide (Fig. 1). The climate scenarios considered here 
include Baseline (1980-2010) with a carbon dioxide concentration ([CO2]) of 360 or 550 ppm, Baseline 
+2oC or +4oC with 360 or 550 ppm CO2, 2050s under representative concentration pathway (RCP) 8.5, 
and 1.5oC and 2.0oC warming above the pre-industrial period from the Half a degree Additional 
warming, Prognosis and Projected Impacts project (referred to as 1.5oC HAPPI and 2.0oC HAPPI). 
These different climate scenarios represent different global warming levels (Ruane et al., 2017). Five 
global climate models (GCMs) were used to produce the future climate change scenarios to consider 
the uncertainty in climate projections in RCP8.5 and HAPPI scenarios. Instead of using regional-
averaged model inputs, detailed cultivar, crop management, and soil datasets were compiled for the 60 
locations. In addition, the effects of possible genetic adaptation with delayed anthesis date and 
increased potential grain filling rate were explored to quantify the impact of trait adaptation on global 
wheat production under baseline and RCP8.5. 

2 METHODS: Following AgMIP protocols, all modelling teams who joined the AgMIP-Wheat activities 
were provided with the same modelling protocols. The protocols were developed by the AgMIP team to 
standardize all critical steps to configure the simulations of the modelling experiments. Each individual 
modelling group executed the full set of model simulations. The datasets of AgMIP-Wheat global 
simulations consists of the model outputs of 32 wheat models for 60 global wheat-producing locations 
under up to nine different climate scenarios. The protocol for running the global simulations under 
Baseline scenarios is provided as an example in the supplementary information. 
 

2.1 Global locations: The 60 global locations were selected by two steps. In the AgMIP-Wheat Phase 
2, simulations for 30 high rainfall / irrigated locations (Locations 1 to 30) were conducted. And, in the 
AgMIP-Wheat Phase 3, another 30 locations for rainfed/low input wheat regions (Locations 31 to 60) 
were added (Table S1). Each location within each mega environment was selected based on 
consultations with the global community of wheat crop modelers, to be representative and to have 
quality data available. The 30 high-rainfall or irrigated wheat-growing locations represent about 68% of 
current global wheat production and the 30 low-rainfall wheat-growing locations with wheat yields below 
4 t DM ha-1 represent about 32% of current global wheat production (Reynolds and Braun, 2013). The 
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60 locations cover all major wheat-growing mega-environment types worldwide (Gbegbelegbe et al., 
2017) (Fig. 1). 

 

Figure 1. The thirty locations representing high rainfall and irrigated wheat regions (blue) and thirty 
locations representing low rainfall/low input regions (red) of the world used in the global simulations, 
after Asseng et al. (2019) and Liu et al. (2019). The thirty high rainfall and irrigated locations include 
locations which have low rainfall during the wheat growing season but have irrigation facilities. Wheat 
areas came from Monfreda et al. (2008) 

2.2 Process-based wheat crop models: Table 1 lists the 32 wheat crop models used. Most of these 
models have been evaluated with detailed experiments (e.g., different growth locations, sowing dates, 
chronic warming, heat stress, FACE), and have been encouraged to improve their models in recent 
AgMIP simulation activities (Maiorano et al., 2017; Wang et al., 2017). All models can be downloaded 
on the Internet or requested from the corresponding person. For the two HAPPI scenarios, only 31 
models participated in the global simulations, all 32 models were used in the simulations for the other 
climate scenarios. 
Among the 32 models, the wheat models even with similar names, used here still have different model 
structures and parameters. For example, the 3 different Expert-N wheat models use different algorithms 
to simulate wheat growth and yield, even they have similar framework in simulating soil dynamics. 
According to our previous study (Wallach et al., 2018), it’s currently hard to conclude which models 
would perform better, as different model performance were observed under different modelling 
experiments and conditions. Appling a multi-model ensemble approach by adding more models would 
decrease the uncertainty significantly (Martre et al., 2015).Therefore, the modelling results from the 32 
models were reported here.  

Table 1. List of the 32 wheat crop models used in the AgMIP Wheat study § 

Code Name (version) Reference Documentation 

AE APSIM-E* (Chen et al., 2010; Keating et al., 
2003; Wang et al., 2002) 

http://www.apsim.info/Wiki 

AF AFRCWHEAT2* (Porter, 1984; Porter, 1993; Weir et 
al., 1984) 

Request from John Porter: jrp@plen.ku.dk 

AQ AQUACROP (V.4.0) (Steduto et al., 2009) http://www.fao.org/nr/water/aquacrop.html 

AW APSIM-Wheat (V.7.3)* (Keating et al., 2003) http://www.apsim.info/Wiki 

CS CropSyst (V.3.04.08) (Stockle et al., 2003) http://modeling.bsyse.wsu.edu/CS_Suite_4/
CropSyst/index.html 

DC DSSAT-CERES-Wheat 
(V.4.0.1.0)* 

(Jones et al., 2003; Ritchie et al., 
1985; Ritchie et al., 1998) 

http://dssat.net/ 

DN DSSAT-Nwheat* (Asseng, 2004; Kassie et al., 2016) http://dssat.net/ 

http://www.apsim.info/Wiki
mailto:jrp@plen.ku.dk
http://www.fao.org/nr/water/aquacrop.html
http://www.apsim.info/Wiki
http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html
http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html
http://dssat.net/
http://dssat.net/
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Table 1. List of the 32 wheat crop models used in the AgMIP Wheat study (Continued) § 

Code Name (version) Reference Documentation 

DR DSSAT-CROPSIM 
(V4.5.1.013)* 

(Hunt and Pararajasingham, 1995; 
Jones et al., 2003) 

http://dssat.net/ 

DS DAISY (V.5.24)* (Hansen et al., 2012; Hansen et al., 
1991) 

http://daisy.ku.dk 

EI EPIC-I (V0810) (Balkovič et al., 2013; Balkovič et 
al., 2014; Kiniry et al., 1995; 
Williams, 1995; Williams et al., 
1989) 

http://epicapex.tamu.edu/epic 

EW EPIC-Wheat(V1102) (Izaurralde et al., 2012; Izaurralde 
et al., 2006; Kiniry et al., 1995; 
Williams, 1995; Williams et al., 
1989)  

http://epicapex.brc.tamus.edu 

GL GLAM (V.2 updated) (Challinor et al., 2004; Li et al., 
2010) 

https://www.see.leeds.ac.uk/research/icas/r
esearch-themes/climate-change-and-
impacts/climate-impacts/glam 

HE HERMES (V.4.26)* (Kersebaum, 2007; Kersebaum, 
2011) 

https://www.zalf.de/en/forschung_lehre/soft
ware_downloads/Pages/default.aspx 

IC INFOCROP (V.1) (Aggarwal et al., 2006) https://www.iari.res.in/infoCrop_v2/InfoCrop-
Registration.php 

LI LINTUL4 (V.1) (Shibu et al., 2010; Spitters and 
Schapendonk, 1990) 

http://models.pps.wur.nl/node/950 

L5 SIMPLACE<Lintul-5* 
SlimWater3, FAO-56, 
CanopyT, 
HeatStressHourly 

(Gaiser et al., 2013; Shibu et al., 
2010; Spitters and Schapendonk, 
1990; Webber et al., 2016) 

http://www.simplace.net/Joomla/ 

LP LPJmL (V3.2) (Beringer et al., 2011; Bondeau et 
al., 2007; Fader et al., 2010; 
Gerten et al., 2004; Müller et al., 
2007; Rost et al., 2008) 

https://www.pik-
potsdam.de/research/projects/activities/bios
phere-water-modelling/lpjml 

MC MCWLA-Wheat (V.2.0) (Tao et al., 2009a; Tao and Zhang, 
2010; Tao and Zhang, 2013; Tao et 
al., 2009b) 

Request from taofl@igsnrr.ac.cn 

MO MONICA (V.1.0)* (Nendel et al., 2011) http://monica.agrosystem-models.com  

NC Expert-N (V3.0.10)  
CERES (V2.0)* 

(Biernath et al., 2011; Priesack et 
al., 2006; Ritchie et al., 1987) 

https://expert-n.uni-hohenheim.de/en 

NG Expert-N (V3.0.10) 
GECROS (V1.0)* 

(Biernath et al., 2011; Yin and van 
Laar, 2005) 

https://expert-n.uni-hohenheim.de/en 

NP Expert-N (V3.0.10) 
SPASS (2.0)* 

(Biernath et al., 2011; Priesack et 
al., 2006; Wang and Engel, 2000;) 

https://expert-n.uni-hohenheim.de/en 

NS Expert-N (V3.0.10) 
SUCROS (V2) 

(Biernath et al., 2011; Goudriaan 
and Van Laar, 1994; Priesack et 
al., 2006) 

https://expert-n.uni-hohenheim.de/en 

OL OLEARY (V.8)* (Latta and O'Leary, 2003; 
Maiorano et al., 2017; O'Leary and 
Connor, 1996a; O'Leary and 
Connor, 1996b; O'Leary et al., 
1985) 

Request from gjoleary@yahoo.com 

S2 Sirius (V2014)* (Jamieson and Semenov, 2000; 
Jamieson et al., 1998; Lawless et 
al., 2005; Semenov and Shewry, 
2011) 

https://sites.google.com/view/sirius-wheat/ 

    

http://dssat.net/
http://daisy.ku.dk/
http://epicapex.tamu.edu/epic
http://epicapex.brc.tamus.edu/
https://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-and-impacts/climate-impacts/glam
https://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-and-impacts/climate-impacts/glam
https://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-and-impacts/climate-impacts/glam
https://www.zalf.de/en/forschung_lehre/software_downloads/Pages/default.aspx
https://www.zalf.de/en/forschung_lehre/software_downloads/Pages/default.aspx
https://www.iari.res.in/infoCrop_v2/InfoCrop-Registration.php
https://www.iari.res.in/infoCrop_v2/InfoCrop-Registration.php
http://models.pps.wur.nl/node/950
http://www.simplace.net/Joomla/
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
mailto:taofl@igsnrr.ac.cn
http://monica.agrosystem-models.com/
https://expert-n.uni-hohenheim.de/en
https://expert-n.uni-hohenheim.de/en
https://expert-n.uni-hohenheim.de/en
https://expert-n.uni-hohenheim.de/en
mailto:gjoleary@yahoo.com
https://sites.google.com/view/sirius-wheat/
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Table 1. List of the 32 wheat crop models used in the AgMIP Wheat study (Continued) § 

Code Name (version) Reference Documentation 

SA SALUS (V.1.0)* (Basso et al., 2010; Senthilkumar 
et al., 2009) 

http://salusmodel.glg.msu.edu 

SP SIMPLACE<Lintul-2 
CC,Heat,CanopyT,Re-
Translocation 

(Angulo et al., 2013) http://www.simplace.net/Joomla/ 

SQ SiriusQuality (V3.0)* (Ferrise et al., 2010; He et al., 
2010; Maiorano et al., 2017; Martre 
et al., 2006) 

http://www1.clermont.inra.fr/siriusquality 

SS SSM-Wheat (Soltani et al., 2013) Request from afshin.soltani@gmail.com 

ST STICS (V.1.1)* (Brisson et al., 2003; Brisson et al., 
1998) 

http://www6.paca.inra.fr/stics_eng 

WG WheatGrow (V3.1) (Cao et al., 2002; Cao and Moss, 
1997; Hu et al., 2004; Li et al., 
2002; Pan et al., 2007; Pan et al., 
2006; Yan et al., 2001)  

Request from yanzhu@njau.edu.cn 

WO WOFOST (V.7.1) (de Wit et al., 2020) http://www.wofost.wur.nl 

§ After Asseng et al. (2019) and Liu et al. (2019) 

*Models that have routines to simulate crop and grain nitrogen dynamics leading to grain protein and have been tested 
with field measurements before. These 18 models have been used in the grain protein analysis.  

 
2.3 Model inputs 
2.3.1 Climate scenarios 
Nine climate scenarios were considered, including Baseline (1980-2010) with 360 or 550 ppm [CO2], 
Baseline +2oC or +4oC with 360 or 550 ppm [CO2], 2050s climate projections under RCP8.5, and 1.5oC 
and 2.0oC warming above the 1861-1880 pre-industrial period from HAPPI, which correspond to ~ 0.6°C 
and 1.1°C above current global mean temperature (Table 2). Five GCMs were used to produce the 
future climate change scenarios in order to allow one to consider the uncertainty of climate projections 
for both the RCP8.5 and HAPPI scenarios.  
The Baseline (1980-2010) climate data are from the AgMERRA climate dataset (Ruane et al., 2015a), 
which combines observations, data assimilation models, and satellite data products to provide daily 
maximum and minimum temperatures, solar radiation, precipitation, wind speed, vapor pressure, dew 
point temperatures, and relative humidity corresponding to the maximum temperature time of day for 
each location. These data correspond to 360 ppm [CO2]. The Baseline+2oC and Baseline+4°C 
scenarios were created by adjusting each day’s maximum and minimum temperatures upward by that 
amount and then adjusting vapor pressure and related parameters to maintain the original relative 
humidity at the maximum temperature time of day. Observations and projections of climate change 
indicate that relative humidity is relatively stable even as this implies increases in specific humidity as 
temperatures increase (commensurate with the Clausius-Clapeyron equation (Allen and Ingram, 2002). 
The values 360 and 550 ppm [CO2] were used for the simulations in Baseline and Baseline+2oC and 
Baseline+4°C scenarios.  
The RCP8.5 scenarios used here represents a relatively high emission scenario for the middle of the 
21st century (RCP8.5 for 2040-2069, 571 ppm [CO2] in 2055). Projections for RCP8.5 were taken from 
five GCMs that are representative of the CMIP5 multi-climate model ensemble (HadGEM2-ES, 
MIROC5, MPI-ESM-MR, GFDL-CM3, GISS-E2-R) (Ruane and McDermid, 2017), with historical 
conditions modified to reflect projected changes in mean temperatures and precipitation along with 
shifts in the standard deviation of daily temperatures and the number of rainy days. These scenarios 
were created using the “Enhanced Delta Method” (Ruane et al., 2015b), and GCMs were selected to 
include models with relatively large and relatively small global sensitivity to the greenhouse gases that 
drive climate changes to account for the uncertainty of the fifth coupled model intercomparison project 
(CMIP5) GCMs ensemble (Ruane and McDermid, 2017). Solar radiation changes from GCMs introduce 
uncertainties that can at times overwhelm the impact of temperature and rainfall changes. Therefore, 
as in previous AgMIP assessments, changes in solar radiation were not considered here other than 
small radiation effects associated with changes in the number of precipitation days (Ruane et al., 
2015b).  
 

http://salusmodel.glg.msu.edu/
http://www.simplace.net/Joomla/
http://www1.clermont.inra.fr/siriusquality
mailto:afshin.soltani@gmail.com
http://www6.paca.inra.fr/stics_eng
mailto:yanzhu@njau.edu.cn
http://www.wofost.wur.nl/
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The 1.5oC and 2.0oC HAPPI scenarios here are consistent with the AgMIP Coordinated Global and 
Regional Assessments (CGRA) 1.5 and 2.0oC World Study (Rosenzweig et al., 2016; Ruane et al., 
2018), using the methods fully described by Ruane et al. (2018). In brief, climate changes from large 
(83-500 members for each model) climate model ensemble projections of the +1.5 and +2.0oC 
scenarios from HAPPI (Mitchell et al., 2017) were combined with the local AgMERRA baseline to 
generate driving climate scenarios from five GCMs (MIROC5, NorESM1-M, CanAM4 [HAPPI], CAM4-
2degree [HAPPI], and HadAM3P) for each location (Ruane et al., 2018). Specifically, the HAPPI 
ensemble changes in monthly mean climate, the number of precipitation days, and the standard 
deviation of daily maximum and minimum temperatures were imposed upon the historical AgMERRA 
daily series using quantile mapping that forces the observed conditions to mimic the future distribution 
of daily events (Ruane et al., 2018; Ruane et al., 2015b). This results in climate scenarios that maintain 
the characteristics of local climate while also capturing major climate changes. HAPPI anticipates [CO2] 
for the 1.5°C and 2.0°C scenarios of 423 and 487 ppm, respectively. As the HAPPI project 
(www.happimip.org/) was designed specifically to represent a stable climate in a +1.5 and +2.0 world, 
not for a specific time period. Therefore, there is no indication for the time period for scenarios 18-27 in 
Table 2. 
 

Table 2 Outline of the baseline and climate change scenarios considered in the global simulations § 

Scen
ario 
id 

Period Climate scenario Global Climate model CO2  Adaptation 

Years Name Code Name Code ppm Code Name Code 

01 1981-2010 Baseline B0 - 0 360 C360 None N 
02 1981-2010 Baseline B0 - 0 360 C360 2-traits 

combination 
T  

03 1981-2010 Baseline+2°C B2 - 0 360 C360 None N 
04 1981-2010 Baseline+4°C B4 - 0 360 C360 None N 
05 1981-2010 Baseline B0 - 0 550 C550 None N 
06 1981-2010 Baseline+2°C B2 - 0 550 C550 None N 
07 1981-2010 Baseline+4°C B4 - 0 550 C550 None N 
08 2040-2069 RCP8.5 85 HadGEM2-ES K 571 C571 None N 
09 2040-2069  RCP8.5 85 MIROC5 O 571 C571 None N 
10 2040-2069  RCP8.5 85 MPI-ESM-MR R 571 C571 None N 
11 2040-2069  RCP8.5 85 GFDL-CM3 1 571 C571 None N 
12 2040-2069  RCP8.5 85 GISS-E2-R 2 571 C571 None N 
13 2040-2069  RCP8.5 85 HadGEM2-ES K 571 C571 2-traits 

combination 
T 

14 2040-2069  RCP8.5 85 MIROC5 O 571 C571 2-traits 
combination 

T  

15 2040-2069  RCP8.5 85 MPI-ESM-MR R 571 C571 2-traits 
combination 

T  

16 2040-2069  RCP8.5 85 GFDL-CM3 1 571 C571 2-traits 
combination 

T  

17 2040-2069  RCP8.5 85 GISS-E2-R 2 571 C571 2-traits 
combination 

T  

18 - 1.5oC HAPPI  15 NorESM1-M T 423 C423 None N 
19 - 1.5oC HAPPI  15 MIROC5 O 423 C423 None N 
20 - 1.5oC HAPPI  15 CanAM4 4 423 C423 None N 
21 - 1.5oC HAPPI  15 CAM4-

2degree 
5 423 C423 None N 

22 - 1.5oC HAPPI  15 HadAM3P 8 423 C423 None N 
23 - 2.0oC HAPPI  20 NorESM1-M T 487 C487 None N 
24 - 2.0oC HAPPI  20 MIROC5 O 487 C487 None N 
25 - 2.0oC HAPPI  20 CanAM4 4 487 C487 None N 
26 - 2.0oC HAPPI  20 CAM4-

2degree 
5 487 C487 None N 

27 - 2.0oC HAPPI  20 HadAM3P 8 487 C487 None N 
§ After Asseng et al. (2019) and Liu et al. (2019) 

 
2.3.2 Soil: Locations 1 to 30 were simulated using soil information from Maricopa, USA (location 1), as 
no water or N limitations were considered (Table S1). Soil information for locations 31 to 60 were 
obtained from a global soil database (Romero et al., 2012). The soil closest to a location was used, but 
for locations 39 and 59, soil carbon was decreased after consulting local experts. Initial soil nitrogen 
was set to 25 kg N ha-1 NO3-N and 5 kg N ha-1 NH4-N per 100 cm soil depth and reset each year for 
locations 31 to 60. Initial plant available soil water for spring wheat sown after winter at locations 31 to 
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60 was set to 100 mm, starting from 10 cm depth until 100 mm was filled in between drained lower limit 
(LL) and drained upper limit (DUL). The first 10 cm were kept at LL and reset each year. If wheat was 
sown after summer, initial plant available soil water was set to 50 mm, starting from 10 cm depth until 
50 mm was filled in between LL and DUL. The first 10 cm were kept at LL and reset each year. The 
details of soil for all 60 locations can be found in data archive. In general, the soil data used for locations 
31-60 were representative for the selected mega environment, as local experts were consulted when 
compiling the soil data. 
 
2.3.3 Crop management: For locations 1 to 30 sowing dates were fixed at a specific date. For locations 
31 to 60, sowing windows were defined and a sowing rule was used. The sowing window was based 
on sowing dates reported in literature. For locations 41, 43, 46, 53, 54, and 59, sowing dates were not 
reported in literature and estimates from a global cropping calendar were used (Portmann et al., 2010). 
The cropping calendar provided a month (the 15th of the month was used) in which wheat is usually 
sown in the region of the location. The start of the sowing window was the reported sowing date and 
the end of the sowing window was set two months later. Sowing was triggered in the simulations on the 
day after cumulative rainfall reached or exceeds 10 mm over a 5-day period during the predefined 
sowing window. Rainfall from up to 5 days before the start of the sowing window was considered. If 
these criteria were not met by the end of the sowing window, wheat was sown on the last day of the 
sowing window. Sowing dates were left unchanged for future scenarios.  
Locations 1 to 30 were simulated without N or water limitation, therefore no inputs for crop water and N 
management were supplied. No irrigation was applied for the 30 low-rainfall wheat-growing locations. 
For locations 31 to 60, fertilizer rates were determined based on a FAO database (FAO, 2013) and 
expert knowledge, which can be found in Gbegbelegbe et al. (2017). Fertilizer rates were set low (20 
to 50 kg N ha-1) at locations 31, 32, 48, 51, 53, and 60; medium (60 kg N ha-1) at locations 33 to 43, 45 
to 47, 49, 50, 52, 54, and 57 to 59; and relatively high (100 to 120 kg N ha-1) at locations 44, 55, and 
56. All fertilizer was applied at sowing. 

 
2.3.4 Cultivars: To carry out the global impact assessment and exclusively focus on climate change, 
region-specific cultivars were used in all 60 locations. Detailed information were available on cultivars 
grown in locations 1 to 30, whereas they were only limited in locations 31 to 60. Therefore, in these 
sites cultivar characteristics were defined by selecting the most presumably suitable cultivars from the 
first set of locations. Observed local mean sowing, anthesis, and maturity dates were supplied to 
modelers with qualitative information on vernalization requirements and photoperiod sensitivity for each 
cultivar (Table S1).  
For locations 35, 39, 47, 49, and 55 to 57 (Table S1), anthesis dates were reported in the literature. For 
the remaining sites from 31 to 60, anthesis dates were estimated with the APSIM-Wheat model. Maturity 
dates were estimated from a cropping calendar for sites 31, 32, 37, 38, 41 to 46, 49 to 54, and 58 to 59 
(Table S1) where no information from literature was available. For locations 31 to 60, observed grain 
yields from the literature (Table S1) were provided to modelers with the aim to set up wheat models to 
have similar yield levels, as well as similar anthesis and maturity dates. No yields were reported for 
sites 49 and 56, so APSIM-Wheat yields were estimated and used as a guide.  

 
2.3.5 Cultivar adaptation: The RCP8.5 scenario and Baseline were examined with current 
management as well as under one possible trait adaptation, which is a cultivar combining delayed 
anthesis and an increased potential grain filling rate.  
To consider the diversity of model approaches of the 32 participating wheat models and allow all 
modelers to incorporate the trait adaptations in their models, we proposed a simple but yet 
physiologically sound trait combination. The proposed traits were simulated in full combination only, to 
quantify the impact of such a trait combination. The aim of these simulations was not to analyze the 
contribution of various individual traits, nor to explore the full range of traits that could possibly assist in 
an adaptation strategy. The proposed simple trait combination that aimed to minimize the impact of 
future increased temperatures on global yield production included: 
1. Delayed anthesis by about 2 weeks under the Baseline scenario via increased temperature sum 
requirement, photoperiod sensitivity, or vernalization requirement. No change in the temperature 
requirement for grain filling duration was considered. 
2. Increased rate (in amount per day) of potential grain filling by 20% (escape strategy). 
It should be noted that this trait combination is currently available in wheat breeding lines and was 
shown to be associated with significant yield increases in warm environments (Asseng et al., 2019). 
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2.4 Model configuration 
Before conducting global simulations, modelers were asked to use the supplied sowing dates and 
calibrate their cultivar parameters against the observed anthesis and maturity dates by considering the 
qualitative information on vernalization requirements and photoperiod sensitivity. In the global 
simulations for locations 1 to 30, no water or nitrogen stress was considered. 
The trait adaptation was simulated by adjusting the cultivar parameters for each location (Table S2). In 
30 of the 32 models, anthesis date was delayed by increasing the thermal time requirement between 
emergence and anthesis, and for five models also by increasing the vernalization requirement and/or 
the photoperiod sensitivity. In two models (AE and DN) anthesis date was delayed without changing 
the thermal time requirement.  
For the adaptation of grain filling trait, the 32 models were classified into five group according to how 
models implemented the adaptation to increase grain filling rate.  
Group 1: Sixteen models with increased rate of grain filling (or harvest index change), including AE, 
AF, AW, DN, EW, IC, LI, NC, NP, NS, OL, SA, GL, MC, SS, ST, WG;  
Group 2: Five models with increased potential grain size (or final harvest index), including DC, DR, CS, 
EI, and LP; 
Group 3: Two models with increased fraction of vegetative biomass remobilization, including L5 and 
SP; 
Group 4: One model with decreased grain filling duration (AQ); 
Group 5: Seven models with no parameter change to increase the rate of grain filling, including DS, 
HE, MO, NG, S2, SQ, and WO.  
Table 2 shows the combination of climate scenarios, CO2 concentration, and trait adaptation for all 27 
scenarios. 
 
2.5 Model outputs: Table 3 shows the 25 output variables from each model that were requested. 
Output data for 30 growing seasons under the same scenario were bind into the same text file as 30 
line records. Results for variables that some models do not simulate are indicated with “na”.  
 

Table 3. Definitions of model output variables 

Variable Unit Definition 

Model - 2-letter model code 

Year YYYY Year of harvest 

Yield Mg DM ha-1 Final grain yield at 0% moisture 

Sowing YYYY-MM-DD Sowing date 

Emergence YYYY-MM-DD Crop emergence date - Zadoks 10 

Anthesis YYYY-MM-DD Anthesis date - Zadoks 65 

Maturity YYYY-MM-DD Physiological maturity date - Zadoks 89 

GNumber grain m-2 Grain number per unit ground area 

Haun Leaf mainstem-1 Decimal number of emerged leaves per main stem (Haun index) 

Biom-an Mg DM ha-1 Cumulative total above ground dry biomass at anthesis 

Biom-ma Mg DM ha-1 Cumulative total above ground biomass at physiological maturity (including 
grain) 

MaxLAI m2 m-2 Maximum leaf area index (green) 

WDrain mm Cumulative (sowing to maturity) water drained below 150 cm at physiological 
maturity 

CumET mm Cumulative evapotranspiration (sowing to maturity) at physiological maturity 

SoilAvW mm Plant available soil water content (soil water minus plant lower limit) in soil 
profile (0-150 cm) at physiological maturity a 

Runoff mm Cumulative runoff at physiological maturity 

Transp mm Cumulative crop transpiration (sowing to maturity) at physiological maturity 

CroN-an kg N ha-1 Cumulative total above ground N mass (crop N uptake) at anthesis 

CroN-ma kg N ha-1 Cumulative total above ground N mass (crop N uptake including grain) at 
physiological maturity 

Nleac kg N ha-1 Cumulative soil N leached (sowing to physiological maturity) below 150 cm at 
physiological maturity a 

GrainN kg N ha-1 Grain N mass at physiological maturity 

Nmin kg N ha-1 Cumulative N mineralization (sowing to physiological maturity) in soil profile 
(0-150 cm) at physiological maturity a 
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Table 3. Definitions of model output variables (Continued) 

Variable Unit Definition 

Nvol kg N ha-1 Cumulative soil N volatilization (sowing to physiological maturity) at 
physiological maturity 

Nimmo kg N ha-1 Cumulative soil N immobilization (sowing to physiological maturity) in soil 
profile (0-150 cm) at physiological maturity a 

SoilN kg N ha-1 Inorganic soil N (NO3-N + NH4-N) in soil profile (0-150 cm) at physiological 
maturity a 

Nden kg N ha-1 Cumulative soil N denitrification (sowing to physiological maturity) in soil profile 
(0-150 cm) at physiological maturity a 

ETo mm Cumulative potential evapotranspiration (sowing to physiological maturity) at 
physiological maturity 

GPC % Grain protein concentration 

a For locations with root depth less than 150 cm, only the soil available water content or nitrogen 

variables from root growth layers was reported. 

3 DATA RECORDS 
3.1 Data format: Data are provided in 27 “TAB” limited text files. Each file contains all annual output 
variables for all 30 growing seasons from the 32 (scenarios 1 to 17 in Table 2) or 31 (scenarios 18 to 
27 in Table 2) wheat models for the 60 global locations in one scenario combination. Files are named 
following the convention below: 
[Scenario id]-[Climate scenario]-[GCM]-[CO2]-[Adaptation].txt 

In the data archive (AgMIP-Wheat, 2020), codes for the scenario id, climate scenario, GCM, CO2 and 
adaptation in the file name are given in Table 2. In each text file, the 2-Letter model code is the 
abbreviation for crop models in Table 1, location number is the two-digits number from Table S1, and 
definitions of other output variables are given in Table 3. In the simulation output files, the years were 
kept to 1981-2010 in the future climate scenarios, instead of using the time periods in Table 2. This was 
simply because the future climate data were developed based on baseline (1980-2010) climate date, 
and the years in the future climate were left unchanged. 
 
3.2 Data availability: The DOI for the dataset is 10.5281/zenodo.4027033 (AgMIP-Wheat, 2020). Data 
are available on the data repository of Zenodo (http://doi.org/10.5281/zenodo.4027033). All global 
simulation data are published under the Creative Commons Attribution 4.0 International (CC BY 4.0) 
license. 
 
3.3 Technical Validation: All global simulation data submitted to the AgMIP-Wheat team were tested 
by using a custom made R script for quality checking. Data were tested for compliance with data 
formats, checking units, variable naming, and file naming. Errors in data formatting, data ranges, and 
time coverage were reported to modelling groups, so that they could check and fix the simulation data. 
 
3.4 Code Availability: The data of the AgMIP-Wheat global simulation dataset were produced by the 
individual modelling groups using different wheat crop models. The source code of these models is 
subject to different distribution policies and needs to be requested from the individual groups. 
 
4 SUMMARY: The primary idea of these global simulations was to quantify global impacts on wheat 
production under different climate change scenarios. Local climate change impacts on wheat grain yield 
and protein (only for RCP8.5) were aggregated to global scale with a multi-model ensemble approach 
(Asseng et al., 2019; Liu et al., 2019). The simulated yields and protein can be used as a benchmark 
from a well-tested multi-model ensemble in future analyses. The multi-model outputs provide a 
comprehensive dataset for investigating resource use efficiency (e.g., for radiation, water, and nitrogen 
use) under different climate scenarios proposed recently (Porter et al., 2019). Also, the dataset can be 
used to explore how to increase different resource use efficiencies while maintaining high yield and 
grain quality for different global wheat cropping systems in the future (Porter et al., 2019). Another 
potential use of this global simulation dataset is for uncertainty analysis, including comparison of 
different modelling approaches at different scales, different sources of uncertainties, and inter-annual 
variability. 
As these datasets were developed mostly for assessing future temperature and CO2 impacts on wheat 
production, several adaptation measures (e.g., changing sowing dates, improving fertilisation) were not 
considered. However, sowing dates would change due the changing rainfall patterns in future climate 
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scenarios, especially for low rainfall locations. This could limit the use of these simulations to explore 
climate change impact for these environments. Improving fertilisation, which could also increase wheat 
production for adapting to climate change, was not considered in the current datasets. Therefore, 
exploring the wheat yield increase potential by improving fertilisation at global scale should be 
considered in the next AgMIP-Wheat activities. 
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