238 research outputs found
Investigation of altering single-nucleotide polymorphism density on the power to detect trait loci and frequency of false positive in nonparametric linkage analyses of qualitative traits
Genome-wide linkage analysis using microsatellite markers has been successful in the identification of numerous Mendelian and complex disease loci. The recent availability of high-density single-nucleotide polymorphism (SNP) maps provides a potentially more powerful option. Using the simulated and Collaborative Study on the Genetics of Alcoholism (COGA) datasets from the Genetics Analysis Workshop 14 (GAW14), we examined how altering the density of SNP marker sets impacted the overall information content, the power to detect trait loci, and the number of false positive results. For the simulated data we used SNP maps with density of 0.3 cM, 1 cM, 2 cM, and 3 cM. For the COGA data we combined the marker sets from Illumina and Affymetrix to create a map with average density of 0.25 cM and then, using a sub-sample of these markers, created maps with density of 0.3 cM, 0.6 cM, 1 cM, 2 cM, and 3 cM. For each marker set, multipoint linkage analysis using MERLIN was performed for both dominant and recessive traits derived from marker loci. Our results showed that information content increased with increased map density. For the homogeneous, completely penetrant traits we created, there was only a modest difference in ability to detect trait loci. Additionally, as map density increased there was only a slight increase in the number of false positive results when there was linkage disequilibrium (LD) between markers. The presence of LD between markers may have led to an increased number of false positive regions but no clear relationship between regions of high LD and locations of false positive linkage signals was observed
Recommended from our members
Life-Expectancy Disparities Among Adults With HIV in the United States and Canada: The Impact of a Reduction in Drug- and Alcohol-Related Deaths Using the Lives Saved Simulation Model.
Improvements in life expectancy among people living with human immunodeficiency virus (PLWH) receiving antiretroviral treatment in the United States and Canada might differ among key populations. Given the difference in substance use among key populations and the current opioid epidemic, drug- and alcohol-related deaths might be contributing to the disparities in life expectancy. We sought to estimate life expectancy at age 20 years in key populations (and their comparison groups) in 3 time periods (2004-2007, 2008-2011, and 2012-2015) and the potential increase in expected life expectancy with a simulated 20% reduction in drug- and alcohol-related deaths using the novel Lives Saved Simulation model. Among 92,289 PLWH, life expectancy increased in all key populations and comparison groups from 2004-2007 to 2012-2015. Disparities in survival of approximately a decade persisted among black versus white men who have sex with men and people with (vs. without) a history of injection drug use. A 20% reduction in drug- and alcohol-related mortality would have the greatest life-expectancy benefit for black men who have sex with men, white women, and people with a history of injection drug use. Our findings suggest that preventing drug- and alcohol-related deaths among PLWH could narrow disparities in life expectancy among some key populations, but other causes of death must be addressed to further narrow the disparities
Data Generated during the 2018 LAPSE-RATE Campaign: An Introduction and Overview
Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado\u27s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020)
Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization
In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve repre- sentation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evi- dence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both imple- mented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and meth- ods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, link- ing archaeologists with climate modelers, biodiversity conservation workers and initiatives.publishedVersio
Recommended from our members
Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization.
In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve representation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evidence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both implemented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and methods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, linking archaeologists with climate modelers, biodiversity conservation workers and initiatives
Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization
In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve representation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evidence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both implemented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and methods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, linking archaeologists with climate modelers, biodiversity conservation workers and initiatives
Recommended from our members
Hospital Readmissions Among Persons With Human Immunodeficiency Virus in the United States and Canada, 2005–2018: A Collaboration of Cohort Studies
BackgroundHospital readmission trends for persons with human immunodeficiency virus (PWH) in North America in the context of policy changes, improved antiretroviral therapy (ART), and aging are not well-known. We examined readmissions during 2005-2018 among adult PWH in NA-ACCORD.MethodsLinear risk regression estimated calendar trends in 30-day readmissions, adjusted for demographics, CD4 count, AIDS history, virologic suppression (<400 copies/mL), and cohort.ResultsWe examined 20 189 hospitalizations among 8823 PWH (73% cisgender men, 38% White, 38% Black). PWH hospitalized in 2018 versus 2005 had higher median age (54 vs 44 years), CD4 count (469 vs 274 cells/μL), and virologic suppression (83% vs 49%). Unadjusted 30-day readmissions decreased from 20.1% (95% confidence interval [CI], 17.9%-22.3%) in 2005 to 16.3% (95% CI, 14.1%-18.5%) in 2018. Absolute annual trends were -0.34% (95% CI, -.48% to -.19%) in unadjusted and -0.19% (95% CI, -.35% to -.02%) in adjusted analyses. By index hospitalization reason, there were significant adjusted decreases only for cardiovascular and psychiatric hospitalizations. Readmission reason was most frequently in the same diagnostic category as the index hospitalization.ConclusionsReadmissions decreased over 2005-2018 but remained higher than the general population's. Significant decreases after adjusting for CD4 count and virologic suppression suggest that factors alongside improved ART contributed to lower readmissions. Efforts are needed to further prevent readmissions in PWH
Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV
- …