13 research outputs found

    A small key for a heavy door: genetic therapies for the treatment of hemoglobinopathies

    Get PDF
    Throughout the past decades, the search for a treatment for severe hemoglobinopathies has gained increased interest within the scientific community. The discovery that É€-globin expression from intact HBG alleles complements defective HBB alleles underlying ÎČ-thalassemia and sickle cell disease, has provided a promising opening for research directed at relieving É€-globin repression mechanisms and, thereby, improve clinical outcomes for patients. Various gene editing strategies aim to reverse the fetal-to-adult hemoglobin switch to up-regulate É€-globin expression through disabling either HBG repressor genes or repressor binding sites in the HBG promoter regions. In addition to these HBB mutation-independent strategies involving fetal hemoglobin (HbF) synthesis de-repression, the expanding genome editing toolkit is providing increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin (HbA) restoration for a personalized treatment of hemoglobinopathies. Moreover, besides genome editing, more conventional gene addition strategies continue under investigation to restore HbA expression. Together, this research makes hemoglobinopathies a fertile ground for testing various innovative genetic therapies with high translational potential. Indeed, the progressive understanding of the molecular clockwork underlying the hemoglobin switch together with the ongoing optimization of genome editing tools heightens the prospect for the development of effective and safe treatments for hemoglobinopathies. In this context, clinical genetics plays an equally crucial role by shedding light on the complexity of the disease and the role of ameliorating genetic modifiers. Here, we cover the most recent insights on the molecular mechanisms underlying hemoglobin biology and hemoglobinopathies while providing an overview of state-of-the-art gene editing platforms. Additionally, current genetic therapies under development, are equally discussed.Genetics of disease, diagnosis and treatmen

    Testing reproducibility of vitrinite and solid bitumen reflectance measurements in North American unconventional source-rock reservoir petroleum systems

    No full text

    Observation of the rare <tex>B_{S}^{0}\rightarrow\mu^{+}\mu^{-}$</tex> decay from the combined analysis of CMS and LHCb data

    No full text

    ÎšÎżÏÏŽÎœÎ· -- ÎœÎżÏƒÏ‡ÎŹÏ„ÎżÎœ

    Get PDF
    A joint measurement is presented of the branching fractions Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- and B0→Ό+Ό−B^0\to\mu^+\mu^- in proton-proton collisions at the LHC by the CMS and LHCb experiments. The data samples were collected in 2011 at a centre-of-mass energy of 7 TeV, and in 2012 at 8 TeV. The combined analysis produces the first observation of the Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- decay, with a statistical significance exceeding six standard deviations, and the best measurement of its branching fraction so far, and three standard deviation evidence for the B0→Ό+Ό−B^0\to\mu^+\mu^- decay. The measurements are statistically compatible with SM predictions and impose stringent constraints on several theories beyond the SM

    The LHCb upgrade I

    No full text
    International audienceThe LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The LHCb upgrade I

    No full text
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The LHCb upgrade I

    No full text
    International audienceThe LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software
    corecore