50 research outputs found

    Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses

    Get PDF
    The combination of U–Pb and Lu–Hf compositions measured in zircon crystals is a remarkably powerful isotopic couplet that provides measures on both the timing of mineral growth and the radiogenic enrichment of the source from which the zircon grew. The U–Pb age documents the timing of zircon crystallization/recrystallization and Hf isotopes inform on the degree to which the host melt was derived from a radiogenic reservoir (e.g. depleted mantle) versus an unradiogenic reservoir (e.g. ancient continental crust), or some mixture of these sources. The ease of generating large quantities of zircon U–Pb and Lu–Hf data has been in large part facilitated by instrument advances. However, the dramatic increase in time constrained zircon Lu–Hf analyses in the Earth science community has brought to the fore the importance of careful data collection and reduction workflows, onto which robust geological interpretations may be based. In this work, we discuss the fundamentals of Lu–Hf isotopes in zircon, which then allows us to provide a robust, accessible, methodology for the assessment of data quality. Additionally, we discuss some novel techniques for: data visualization — that facilitates better transparency of data interpretation; integration of geographic information — that may reveal spatial trends where temporal trends were only apparent before; and some novel statistical evaluation tools — that may provide more rigorous inter- and intra-sample comparisons

    Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland

    Get PDF
    GeoHistory Facility instruments (part of the John de Laeter Centre) were funded via an Australian Geophysical Observing System (AGOS) grant provided to AuScope by the AQ44 Australian Education Investment Fund.The Mesoarchean Akia Terrane in West Greenland contains a detailed magmatic and metamorphic mineral growth record from 3.2 Ga to at least c. 2.5 Ga. This time span makes this region an important case study in the quest to track secular changes in geodynamic style which may ultimately inform on the development of plate tectonics as a globally linked system of lateral rigid plate motions. The common accessory mineral titanite has recently become recognised as a powerful high temperature geochronometer whose chemistry may chart the thermal conditions of its growth. Furthermore, titanite offers the potential to record the time-temperature history of mafic lithologies, which may lack zircon. Although titanite suffers from higher levels of common Pb than many other UPb chronometers, we show how measurement of 207Pb/206Pb in texturally coeval biotite may assist in the characterization of the appropriate common Pb composition in titanite. Titanite extracted from two samples of mafic gneisses from the Akia Terrane both yield UPb ages of c. 2.54 Ga. Although coeval, their chemistry implies growth under two distinctly different processes. In one case, the titanite has elevated total REE, high Th/U and grew from an in-situ partial melt, consistent with an identical date to granite dyke zircon. In contrast, the second titanite sample contains greater common Pb, lower total REE, lower Th/U, and grew from dominantly hydrothermal fluids. Zr-in-titanite thermometry for partial melt-derived titanite, with activities constrained by phase equilibrium modelling, indicates maxima of c. 690 °C. Elsewhere in the Akia Terrane, coeval metamorphism linked to growth of hydrothermal titanite is estimated at temperatures of c. 670 °C. These new results when coupled with existing findings indicate punctuated, repeated metamorphic events in the Akia Terrane, in which high temperature conditions (re)occurred at least three times between 3.0 and 2.5 Ga, but crucially changed in style across a c. 3.0 Ga change point. We interpret this change in metamorphism as reflecting a fundamental shift in geodynamic style in West Greenland at 3.0 Ga, consistent with other estimates for the onset of widespread plate tectonic-type processes.Publisher PDFPeer reviewe

    Did transit through the galactic spiral arms seed crust production on the early Earth?

    Get PDF
    Although there is evidence for periodic geological perturbations driven by regular or semi-regular extra-terrestrial bombardment, the production of Earth’s continental crust is generally regarded as a function of planetary differentiation driven by internal processes. We report time series analysis of the Hf isotopic composition of zircon grains from the North Atlantic and Pilbara cratons, the archetypes of Archean plate tectonic and non-plate tectonic settings, respectively. An ~170–200 m.y. frequency is recognized in both cratons that matches the transit of the solar system through the galactic spiral arms, where the density of stars is high. An increase in stellar density is consistent with an enhanced rate of Earth bombardment by comets, the larger of which would have initiated crustal nuclei production via impact-driven decompression melting of the mantle. Hence, the production and preservation of continental crust on the early Earth may have been fundamentally influenced by exogenous processes. A test of this model using oxygen isotopes in zircon from the Pilbara craton reveals correlations between crust with anomalously light isotopic signatures and exit from the Perseus spiral arm and entry into the Norma spiral arm, the latter of which matches the known age of terrestrial spherule beds. Our data support bolide impact, which promoted the growth of crustal nuclei, on solar system transit into and out of the galactic spiral arms

    Sediment routing and basin evolution in Proterozoic to Mesozoic east Gondwana: A case study from southern Australia

    Get PDF
    Sedimentary rocks along the southern margin of Australia host an important record of the break-up history of east Gondwana, as well as fragments of a deeper geological history, which collectively help inform the geological evolution of a vast and largely underexplored region. New drilling through Cenozoic cover has allowed examination of the Cretaceous rift-related Madura Shelf sequence (Bight Basin), and identification of two new stratigraphic units beneath the shelf; the possibly Proterozoic Shanes Dam Conglomerate and the interpreted Palaeozoic southern Officer Basin unit, the Decoration Sandstone. Recognition of these new units indicates an earlier basinal history than previously known. Lithostratigraphy of the new drillcore has been integrated with that published from onshore and offshore cores to present isopach maps of sedimentary cover on the Madura Shelf. New palynological data demonstrate progression from more localised freshwater-brackish fluvio-lacustrine clastics in the early Cretaceous (Foraminisporis wonthaggiensis – Valanginian to Barremian) to widespread topography-blanketing, fully marine, glauconitic mudrocks in the mid Cretaceous (Endoceratium ludbrookiae – Albian). Geochronology and Hf-isotope geochemistry show detrital zircon populations from the Madura Shelf are comparable to those from the southern Officer Basin, as well as Cenozoic shoreline and palaeovalley sediments in the region. The detrital zircon population from the Shanes Dam Conglomerate is defined by a unimodal ~1400 Ma peak, which correlates with directly underlying crystalline basement of the Madura Province. Peak ages of ~1150 Ma and ~1650 Ma dominate the age spectra of all other samples, indicating a stable sediment reservoir through much of the Phanerozoic, with sediments largely sourced from the Albany-Fraser Orogen and Musgrave Province (directly and via multiple recycling events). The Madura Shelf detrital zircon population differs from published data for the Upper CretaceousCeduna Delta to the east, indicating significant differences in sediment provenance and routing between the Ceduna Sub-basin and central Bight Basin

    Assessing the mechanisms of common Pb incorporation into titanite

    Get PDF
    Common Pb, the portion of non-radiogenic Pb within a U bearing mineral, needs to be accurately accounted for in order to subtract its effect on U-Pb isotopic ratios so that meaningful ages can be calculated. The propensity to accommodate common Pb during crystallization, or later, is different across the range of U bearing minerals used for geochronology. Titanite frequently accommodates significant amounts of common Pb. However, the most appropriate method to correct for this requires knowledge on the mechanism and timing of common Pb incorporation; information that is commonly difficult to extract. In this study, the spatial and compositional distribution of trace elements (including Pb) in metamorphic titanites from a Greenland amphibolite is investigated on the grain- to nano-scale. Titanites have an isotopically similar signature for both common and radiogenic-Pb in all grains but significantly different quantities of the non-radiogenic component. Microstructural and compositional examination of these grains reveals undeformed, but high common Pb (F207%) titanites have homogeneous element distributions on the atomic scale suggesting common Pb is incorporated into titanite during its growth and not during later processes. In contrast, deformed titanite comprising low-angle boundaries, formed by subgrain rotation recrystallization, comprise networks of dislocations that are enriched in Mg, Al, K and Fe. Smaller cations may migrate due to elastic strain in the vicinity of the dislocation network, yet the larger K cations more likely reflect the mobility of externally-derived K along the orien tation interface. The absence of Pb enrichment along the boundary indicates that either Pb was too large to fit into migrating lattice dislocations or static low-angle boundaries and/or that there was no external Pb available to diffuse along the grain boundary. As the common Pb composition is distinctly different to regional Pb models, the metamorphic titanite grew in a homogeneous Pb reservoir dominated by the break-down of precursor U-bearing phases. The different quantity of common Pb in the titanite grains indicates a mineral-driven element partitioning in an isotopically homogeneous metamorphic reservoir, consistent with low U, low total REE and flat LREE signatures in high F207% analyses. These results have implications for the selection of appropriate common Pb corrections in titanite and other accessory phases

    Petrogenesis and Ni-Cu sulphide potential of mafic-ultramafic rocks in the Mesoproterozoic Fraser Zone within the Albany-Fraser Orogen, Western Australia

    Get PDF
    The Albany Fraser Orogen is located along the southern and southeastern margins of the Archean Yilgarn Craton. The orogen formed during reworking of the Yilgarn Craton, along with variable additions of juvenile mantle material, from at least 1810 Ma to 1140 Ma. The Fraser Zone is a 425 km long and 50 km wide geophysically distinct belt near the northwestern edge of the orogen, hosting abundant sills of predominantly metagabbroic non-cumulate rocks, but including larger cumulate bodies, all emplaced at c. 1300 Ma. The gabbroic rocks are interpreted to have crystallised from a basaltic magma that had ∼8.8% MgO, 185 ppm Ni, 51 ppm Cu, and extremely low contents of platinum-group elements (PGE, <1 ppb). Levels of high field-strength elements (HFSE) in the least enriched rocks indicate that the magma was derived from a mantle source more depleted than a MORB source. Isotope and trace element systematics suggest that the magma was contaminated (εNd 0 to −2 throughout, La/Nb around 3) with small (<10%) amounts of crust before and during ascent and emplacement. Larger bodies of cumulate rocks show evidence for additional contamination, at the emplacement level, with country-rock metasedimentary rocks or their anatectic melts. The area has been the focus of considerable exploration for Ni–Cu sulphides following the discovery of the Nova deposit in 2012 in an intrusion consisting of olivine gabbronoritic, noritic and peridotitic cumulates, interlayered with metasedimentary rocks belonging to the Snowys Dam Formation of the Arid Basin. Disseminated sulphides from a drillcore intersecting the structurally upper portion of the intrusion, above the main ore zone, have tenors of ∼3–6.3% Ni, 1.8–6% Cu and mostly <500 ppb PGE, suggesting derivation from magma with the same composition as the regional Fraser Zone metagabbroic sills, at R factors of ∼1500. However, the Nova rocks tend to have higher εSr (38–52) and more variable δ34S (−2 to +4) than the regional metagabbros (εSr 17–32, δ34S around 0), consistent with the geochemical evidence for enhanced crustal assimilation of the metasedimentary country-rock in a relatively large magma staging chamber from which pulses of sulphide bearing, crystal-charged magmas were emplaced at slightly different crustal levels. Preliminary investigations suggest that the critical factors determining whether or not Fraser Zone mafic magmas are mineralised probably relate to local geodynamic conditions that allow large magma chambers to endure long enough to sequester country-rock sulphur
    corecore