144 research outputs found

    Rift Valley Fever – epidemiological update and risk of introduction into Europe

    Get PDF
    Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5–15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228–700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.info:eu-repo/semantics/publishedVersio

    Breeding performance of the grasshopper buzzard (<i>Butastur rufipennis</i>) in a natural and a human-modified West African savanna

    Get PDF
    Few studies have examined raptor reproduction in response to land-use change in sub-Saharan Africa, hampering conservation efforts to address regional declines. To further our understanding of mechanisms underlying the dramatic declines of West African raptors, we examined the relationship between environmental conditions, nest density, and measures of reproduction in the Grasshopper Buzzard (Butastur rufipennis). Analyses were based on 244 nest sites divided between transformed and natural habitat in northern Cameroon. At the landscape scale, nest density increased with the density of preferred nest trees. Nests were more widely spaced in transformed than in natural habitat. Dispersion was adjusted to differences in availability of small mammals, which was negatively associated with distance to nearest neighbor, and in the area under cultivation, which was positively associated with distance to nearest neighbor. Productivity was positively associated with rainfall, canopy shielding the nest, availability of grasshoppers, and the nest's visibility from ground level; canopy shielding, grass cover, rainfall, and distance to nearest neighbor were positively associated with nest success. In natural habitat, losses of eggs and nestlings to natural predators were greater than in transformed habitats, while losses through human predation were small. Productivity and nest success were unaffected by land use because of the opposing effects of greater predation pressure, closer spacing of nests, and more food in natural habitat than in transformed habitat. Thus transformed habitat may provide adequate breeding habitat for the Grasshopper Buzzard, but declining rainfall and intensifying anthropogenic land use are likely to affect future reproductive output

    A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment.</p> <p>Findings</p> <p>The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3′-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl<sub>3</sub> equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4′- and 4,6′-diacetyl-3,3′-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms.</p> <p>Conclusions</p> <p>Friedel-Crafts acetylation of 3,3′-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl<sub>3</sub> complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3′-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl<sub>3</sub> does not seem to be important in determining the mechanism.</p

    CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    Get PDF
    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue

    Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea

    Get PDF
    Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions

    Why elephant have trunks and giraffe long tongues: how plants shape large herbivore mouth morphology

    No full text
    Abstract Pretorius, Y., de Boer, W.F., Kortekaas, K., van Wijngaarden, M., Grant, R.C., Kohi, E.M., Mwakiwa, E., Slotow, R., Prins, H.H.T. 2015. Why elephant have trunks and giraffe long tongues: how plants shape large herbivore mouth morphology. -Acta Zoologica (Stockholm) 00: 000-000. We investigated whether mass and morphological spatial patterns in plants possibly induced the development of enlarged soft mouth parts in especially megaherbivores. We used power functions and geometric principles to explore allometric relationships of both morphological and foraging characteristics of mammalian herbivores in the South African savannah, covering a body size range of more than three orders magnitude. Our results show that, although intradental mouth volume scaled to a power slightly less than one to body mass, actual bite volume, as measured in the field, scaled to body mass with a factor closer to 1.75. However, when including the volume added to intradental mouth volume by soft mouth parts, such as tongue and lips (or trunks in elephant), mouth volume scaled linearly with actual bite volume and in a similar fashion as actual bite volume to body size. Bite mass and bite leaf mass scaled linearly with body size. We conclude that these scaling relationships indicate that large herbivores use their enlarged soft mouth parts to not only increase bite volume and thereby bite mass, but also select soft plant parts and thereby increase the leaf mass fraction per bite
    corecore