7 research outputs found

    Dopamine D2 receptor stimulation modulates the balance between ignoring and updating according to baseline working memory ability

    Get PDF
    BACKGROUND:Working memory (WM) deficits in neuropsychiatric disorders have often been attributed to altered dopaminergic signalling. Specifically, D2 receptor stimulation is thought to affect the ease with which items can be gated into and out of WM. In addition, this effect has been hypothesised to vary according to baseline WM ability, a putative index of dopamine synthesis levels. Moreover, whether D2 stimulation affects WM vicariously through modulating relatively WM-free cognitive control processes has not been explored. AIMS:We examined the effect of administering a dopamine agonist on the ability to ignore or update information in WM. METHOD:A single dose of cabergoline (1 mg) was administered to healthy older adult humans in a within-subject, double-blind, placebo-controlled study. In addition, we obtained measures of baseline WM ability and relatively WM-free cognitive control (overcoming response conflict). RESULTS:Consistent with predictions, baseline WM ability significantly modulated the effect that drug administration had on the proficiency of ignoring and updating. High-WM individuals were relatively better at ignoring compared to updating after drug administration. Whereas the opposite occurred in low-WM individuals. Although the ability to overcome response conflict was not affected by cabergoline, a negative relationship between the effect the drug had on response conflict performance and ignoring was observed. Thus, both response conflict and ignoring are coupled to dopaminergic stimulation levels. CONCLUSIONS:Cumulatively, these results provide evidence that dopamine affects subcomponents of cognitive control in a diverse, antagonistic fashion and that the direction of these effects is dependent upon baseline WM

    Dopamine modulates dynamic decision-making during foraging

    Get PDF
    The mesolimbic dopaminergic system exerts a crucial influence on incentive processing. However, the contribution of dopamine in dynamic, ecological situations where reward rates vary, and decisions evolve over time, remains unclear. In such circumstances, current (foreground) reward accrual needs to be compared continuously with potential rewards that could be obtained by travelling elsewhere (background reward rate), in order to determine the opportunity cost of staying versus leaving. We hypothesised that dopamine specifically modulates the influence of background – but not foreground – reward information when making a dynamic comparison of these variables for optimal behaviour. On a novel foraging task based on an ecological account of animal behaviour (marginal value theorem), human participants of either sex decided when to leave locations in situations where foreground rewards depleted at different rates, either in rich or poor environments with high or low background rates. In line with theoretical accounts, people’s decisions to move from current locations were independently modulated by changes in both foreground and background reward rates. Pharmacological manipulation of dopamine D2 receptor activity using the agonist cabergoline significantly affected decisions to move on, specifically modulating the effect of background reward rates. In particular, when on cabergoline, people left patches in poor environments much earlier. These results demonstrate a role of dopamine in signalling the opportunity cost of rewards, not value per se. Using this ecologically derived framework we uncover a specific mechanism by which D2 dopamine receptor activity modulates decision-making when foreground and background reward rates are dynamically compared

    Baseline impulsivity may moderate L-DOPA effects on value-based decision-making

    Get PDF
    Abstract Research has indicated a major role of dopamine in decision-making processes, but the underlying mechanisms remain largely unknown due to inconsistency in effects of dopaminergic drugs. To clarify the impact of dopamine on impulsive choice, we administered 150 mg L-DOPA to 87 healthy adults in a randomized, placebo-controlled, double-blind, crossover study, evaluating performance in four value-based decision-making tasks. We predicted that baseline impulsivity would moderate L-DOPA effects. In support of our hypothesis, L-DOPA had no main effect on impulsive choice, but reduced risk-seeking for gains in more-impulsive subjects. Because L-DOPA effects may be influenced by body weight, we repeated our analyses on data from half of the sample (n = 44) with lower weight, anticipating a stronger effect. In addition to the effect on risk-seeking for gains, low-weight participants also exhibited baseline-dependent effects of L-DOPA on loss aversion and delay discounting. Our results are consistent with the hypothesis of an inverted U-shaped dopamine function in which both low and high extremes of dopamine signaling are associated with high-impulsive choice. Consideration of differential baseline impulsivity and body weight may resolve previous seemingly paradoxical pharmacological results and might deepen our understanding of dopaminergic mechanisms underlying impulsivity

    Pericytes: developmental, physiological, and pathological perspectives, problems, and promises

    Get PDF
    Pericytes, the mural cells of blood microvessels, have recently come into focus as regulators of vascular morphogenesis and function during development, cardiovascular homeostasis, and disease. Pericytes are implicated in the development of diabetic retinopathy and tissue fibrosis, and they are potential stromal targets for cancer therapy. Some pericytes are probably mesenchymal stem or progenitor cells, which give rise to adipocytes, cartilage, bone, and muscle. However, there is still confusion about the identity, ontogeny, and progeny of pericytes. Here, we review the history of these investigations, indicate emerging concepts, and point out problems and promise in the field of pericyte biology
    corecore