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Pericytes, the mural cells of blood microvessels, have recently come into focus as regulators of vascular
morphogenesis and function during development, cardiovascular homeostasis, and disease. Pericytes are
implicated in the development of diabetic retinopathy and tissue fibrosis, and they are potential stromal
targets for cancer therapy. Some pericytes are probably mesenchymal stem or progenitor cells, which
give rise to adipocytes, cartilage, bone, and muscle. However, there is still confusion about the identity,
ontogeny, and progeny of pericytes. Here, we review the history of these investigations, indicate emerging
concepts, and point out problems and promise in the field of pericyte biology.
Introduction
Although Eberth described their presence in 1871 (Eberth, 1871),

the discovery of pericytes is commonly assigned to the French

scientist Charles-Marie Benjamin Rouget, who two years later

described a population of contractile cells surrounding the endo-

thelial cells of small blood vessels (Rouget, 1873). Zimmermann

later called these cells ‘‘Rouget cells’’ and also coined the term

‘‘pericytes,’’ alluding to their location in close proximity to the

endothelial cells (Zimmermann, 1923). Between 1920 and 1950

numerous other publications described pericytes, some of

them, however, questioning the contractility of the cells (re-

viewed by Sims, 1986). Part of these discrepancies probably

had experimental reasons, but they may also reflect pericyte

heterogeneity and confusion about cell identities. Today, it is

clear that different cell types occupy the periendothelial com-

partments, yet that their correct identification is still challenging

(reviewed by Krueger and Bechmann, 2010).

The currently accepted definition of a mature pericyte as a cell

embedded within the vascular basement membrane (BM) came

with the application of electron microscopy (reviewed by Sims,

1986). As discussed below, this definition is difficult to apply

in situations of active angiogenesis. Another commonly applied

defining criterion is the presence in microvessels, i.e., capil-

laries, postcapillary venules, and terminal arterioles. Also, this

definition has been challenged by observations of subendothe-

lial pericyte-like cells in large vessels (reviewed by Dı́az-Flores

et al., 2009).

The periendothelial location of pericytes is frequently

confused with the periendothelial location of vascular smooth

muscle cells (vSMCs), fibroblasts, macrophages, and even

epithelial cells. Although the field has generally adopted the

view that pericytes belong to the same lineage and category of

cells as vSMCs, it should be remembered that there is no single

molecular marker known that can be used to unequivocally iden-

tify pericytes and distinguish them from vSMCs or other mesen-

chymal cells. The multiple markers that are commonly applied

are neither specific nor stable in their expression.
As a result, the term pericyte is frequently used in the literature

to denote any microvascular periendothelial mesenchymal cell.

In fact, most published papers on pericytes do not investigate

whether they share BM with the endothelium and, to a large

part, do not succeed in distinguishing pericytes from other peri-

vascular cells. Current work on mesenchymal stem cells in the

blood vessel wall and their possible relation to pericytes is one

such area that we discuss further below. In fairness, the defini-

tion of a pericyte by criteria that requires ultrastructural analysis

for identification is not practical.

Thus, as a compromise pericytes are usually defined—or

described—using a mixture of criteria including location,

morphology, and gene/protein expression pattern. Below, we

highlight ambiguities concerning these criteria to help the reader

value a particular concept or result. We attempt to provide

a broad but brief base for the reader about the anatomy and

ontogeny of pericytes and of the signaling pathways involved

in pericyte recruitment and communication with the endothe-

lium. These are topics that have been covered in greater depth

in other recent reviews (Armulik et al., 2005; Gaengel et al.,

2009). We go into more detail concerning the physiology and

pathophysiology of pericytes, which are areas where significant

advances have been made recently. Whereas uncertainties con-

cerning cell lineages and identities remain, there is sufficient

available information to consider a scenario in which pericytes

play critical physiological roles in vascular development and

homeostasis, as sources of fibrogenic cells in pathological situ-

ations, and as a possible reservoir of stem or progenitor cells for

adult tissue repair.

Morphological Considerations
Shape and Location—a Continuum of Mural Cell

Phenotypes

Pericytes appear to be ubiquitously present in blood microves-

sels, but not normally in lymphatic capillaries. In certain devel-

opmental abnormalities, or pathological situations, lymphatic

capillaries may attract ectopic pericytes (Petrova et al., 2004).
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Figure 1. Pericyte Anatomy
(A) A continuum of mural cell cyto-architecture from
arteriole to venule. A single vSMC layer around
arterioles and precapillary arterioles encircles the
entire abluminal side of the endothelium. vSMCs
around arterioles have a flattened, spindle-shaped
appearance with few cytoplasmic processes,
whereas around precapillary arterioles the cell
bodies are distinctly protruding and extend several
processes encircling the endothelium. Pericytes
investing capillaries have a nearly rounded cell body
that gives rise to a few primary processes running
on the endothelium in the length of the capillary. The
primary processes give rise to secondary perpen-
dicular processes. The tips of secondary processes
attach firmly to the endothelium. On postcapillary
venules themural cell body flattens and gives rise to
many slender, branching processes. vSMCs cov-
ering venules have a relatively big, stellate shape
cell body with many branching processes, which,
unlike arteriolar vSMCs, do not wrap circularly
around the endothelium.

(B) Ultrastructural characteristics of pericytes and pericyte-endothelial interactions. Pericytes are rather anonymous in transmission electron microscopy. The
mature capillary pericyte (P) has a discoid nucleus that is surrounded by a small amount of cytoplasm containing protein-producing organelles andmitochondria.
Microtubules stretch along the primary and secondary cytoplasmic extensions. Intermediate filaments composed of desmin and vimentin are mostly
concentrated within in the primary extensions. Dense bands of microfilaments containing actin, myosin, and tropomyosin are concentrated beneath the plasma
membrane, in particular the inner surface membrane facing the endothelium. The outer, abluminal pericyte surface often shows numerous caveolae. Despite
being separated by the shared BM, pericytes and endothelial cells (E) make numerous direct contacts of different type: schematically depicted are peg-socket
contacts and adhesion plaques.
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Pericytes extend primary cytoplasmic processes along the ablu-

minal surface of the endothelial tube. These processes usually

span several endothelial cells and occasionally bridge neigh-

boring capillary branches. At capillary branch points, which

commonly harbor a pericyte soma, primary processes are often

found to extend along each branch, conferring a cellular

Y-shape. Thin secondary processes extend from the primary

processes. These are usually perpendicular in their orientation

relative to the primary branches, thereby partially encircling the

vessel (Figure 1A).

Ultrastructure

The pericytes are enveloped in a BM that is continuous with the

endothelial BM. Pericytes probably contribute products to the

BM, and in vitro analysis demonstrates that pericyte-endothelial

interaction regulates BM assembly (Stratman et al., 2009, 2010).

Mature pericytes thus become embedded within a capillary

BM, a feature that makes it possible to identify primary and

secondary pericyte processes by transmission electrommicros-

copy in ultrathin sections (Sims, 1986). It is unclear to what extent

mature pericytes are always fully BM embedded. The literature

contains many descriptions of incomplete or even absent BM

coverage (reviewed by Dı́az-Flores et al., 2009). The relationship

between the pericyte and the microvascular BM is hard to see in

embryonic tissue or in pathological situations, where angiogen-

esis is active and the BM in a state of synthesis or turnover.

Here, the distinction between pericytes and other perivascular

mesenchymal cells is particularly problematic.

The majority of the pericyte-endothelial interface is separated

by a BM (Figure 1B). However, at discrete points, the two cell

types contact each other at holes in the BM. The number and

size of pericyte-endothelial contacts may vary between tissues,

but up to 1,000 contacts have been described for a single endo-

thelial cell. The contacts are of peg-socket type, in which peri-

cyte cytoplasmic fingers (pegs) are inserted into endothelial in-

vaginations (pockets). Other contact morphologies have been
194 Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc.
described, including sites where the two membranes come

very close together (close or occluding contacts). These are

located at the edge of the pericyte processes and possibly

play an anchoring role. Another type of contacts, referred to as

adhesion plaques, show microfilament bundles attached at the

pericyte plasma membrane and electron-dense material in the

opposing endothelial cytoplasm. They contain fibronectin and

resemble adherence junctions ultrastucturally. Possibly, these

are the sites where N-cadherin-based connections are formed

between endothelial cells and pericytes (Gerhardt and Betsholtz,

2003; Gerhardt et al., 2000). Gap junction-like structures have

also been reported at contacts between endothelial cells and

pericytes (Dı́az-Flores et al., 2009). These observations are

somewhat anecdotal, however, and functional evidence for

gap junctions between endothelial cells and pericytes exists

in vitro (Larson et al., 1987), but not in vivo. As discussed below,

the production of TGFb by endothelial and mural cells may

require their contact through gap junctions.

Pericyte Abundance

The pericyte density varies between different organs and

vascular beds, and the proportion of the endothelial abluminal

surface that is pericyte covered varies as well. The central ner-

vous system (CNS) vasculature is generally regarded as being

the most pericyte covered, with a 1:1–3:1 ratio between endo-

thelial cells and pericytes, and an approximately 30% coverage

of the abluminal surface (Mathiisen et al., 2010; Sims, 1986).

Significantly lower ratios have been reported for some other

tissues, e.g., human skeletal muscle, which has been stated to

have a 100:1 endothelial-to-pericyte ratio (reviewed in Dı́az-

Flores et al., 2009; Shepro and Morel, 1993). Although there is

undoubtedly variation, very low figures like this one are based

on singular reports and may be questioned since much higher

ratios have been described in skeletal muscle in other studies

(Tilton et al., 1979). If true, it would also imply that many endothe-

lial cells would be without pericyte contact, a situation that has



Figure 2. Examples of Pericyte Identification Using Different
Markers
(A) The vascular BM of a brain capillary identified by collagen IV (Col-IV, green)
and pericytes surrounding the endothelium by PDGFRb (red) immunostaining.
Note that the pericyte is embedded in vessel basement membrane, as seen by
the yellow appearance on the merged image. The white arrow points to a
typical pericyte cell body and the arrowheads indicate pericyte processes that
stretch horizontally along the capillary.
(B) A 3D view of brain endothelial cells (CD105, red) and pericytes (desmin,
green). Note the dissimilar appearance of pericytes compared to the one in (A),
which is due to the different marker used for identification. Desmin is an
intracellular intermediate filament protein, visualizing clustered intermediate
filaments, whereas PDGFRb is a transmembrane cell surface protein dis-
playing the pericyte membrane contour.
(C) Triple immunostaining of endothelium (CD31, blue) and mural cells
(NG2-green; aSMA -red) in the retina. vSMCs covering the vein (v) are positive
for aSMA and occasionally also for NG2, whereas pericytes surrounding the
capillaries are aSMA negative and NG2 positive.
(D) Epifluorescent image of retinal vessels of a promoter trap transgenicmouse
(XlacZ4) where pericyte nuclei are identified by X-gal staining (dark blue) and
cell bodies by NG2 staining (green). Endothelial cells are visualized by CD31
(red) staining. Note that all X-gal-positive cells are also positive for NG2. Red
arrowheads point to vSMCs covering the vein (v) and white arrowheads
indicate pericytes covering capillaries.
Scale bars represent 10 mm (A), 20 mm (B), and 50 mm (C and D).
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otherwise only been observed in pathological situations and in

specific gene-targeted mouse mutants (see below). A conserva-

tive estimate based on available information is that endothelial-

to-pericyte ratios in normal tissues vary between 1:1 and 10:1

and that pericyte coverage of the endothelial abluminal surface

ranges between 70% and 10% (reviewed by Sims, 1986). These

differences are in part organ specific, and pericyte density and/

or coverage appears to correlate positively with endothelial bar-

rier properties (i.e., brain > lung > muscle), endothelial cell turn-

over (large coverage = less EC turnover) (Dı́az-Flores et al.,

2009), and orthostatic blood pressure (larger coverage in lower

body parts) (Sims et al., 1994). These observations are thus

consistent with a role of pericytes in regulating capillary barriers,

endothelial proliferation, and capillary diameter.
Identification

Several recent reviews provide lists of molecular markers for

pericytes (Armulik et al., 2005; Dı́az-Flores et al., 2009; Krueger

and Bechmann, 2010) (examples shown in Figure 2). However,

not all markers are useful from a practical perspective. It is

also important to remember that no single entirely pericyte-

specific marker is known and that all markers currently used

are dynamic in their expression andmay be up or downregulated

in conjunction with developmental states, pathological reac-

tions, in vitro culturing, etc. A state-of-the-art identification of

pericytes in tissue sections or whole-mount preparations there-

fore relies on a combination of well-preserved tissue mor-

phology, counter-labeling of endothelial cells, and two or more

pericyte markers. Table 1 provides a list of currently validated

and often-used pericyte markers, as well as emerging and trans-

genic markers for murine studies.

Ontogeny of Pericytes
Early observations suggested that mural cells originate from

mesenchymal cells that condense on the abluminal side of the

endothelial tube (Clark and Clark, 1925), a scenario that has

been reinforced through later studies (Drake et al., 1998; Hunger-

ford and Little, 1999). However, while mature vSMCs have

a similar morphology and marker expression profile throughout

the vasculature, it is now clear from numerous lineage-tracing

studies that they have several different developmental origins,

making even a single vessel mosaic from a developmental point

of view (reviewed in Majesky, 2007; Majesky et al., 2011). For

example, vSMCs of the aorta and many of its proximal branches

have at least four different developmental origins—secondary

heart field, neural crest, somites, and splanchnic mesoderm—

contributions that largely follow a segmental pattern of

distribution.

Probably, the majority of the mural cells in the head region,

including all parts of the CNS, are neural crest derived, as

demonstrated in chick-quail chimeras (Bergwerff et al., 1998;

Etchevers et al., 2001; Korn et al., 2002) and indicated by marker

expression in mice (Heglind et al., 2005) (Figure 3). Recent

studies on thymus development demonstrated that also the

mural cells in the thymus are derived from neural crest (Foster

et al., 2008; Müller et al., 2008).

The origins of vascular mural cells in the gut (Wilm et al., 2005),

lung (Que et al., 2008), and liver (Asahina et al., 2011) have been

mapped to the mesothelium, the single-layer squamous epithe-

lium that lines the coelomic cavities and its organs. Coronary

vessel mural cells in the heart appear to have a similar develop-

ment. Here, the epicardial mesothelium is thought to give rise to

cardiac mesenchymal cells, including coronary vSMCs and peri-

cytes (Cai et al., 2008a; Dettman et al., 1998; Mikawa and Gour-

die, 1996; Wessels and Pérez-Pomares, 2004; Zhou et al., 2008)

(Figure 3).

Taken together, the above-mentioned work therefore sug-

gests that a common principle may exist for the development

of mural cells in coelomic organs. Here, mesothelial cells un-

dergo epithelial-to-mesenchymal transition (EMT), delaminate,

and migrate into the organs to produce their mesenchymal

components, including fibroblasts, vSMCs, and, most likely,

also the pericytes. Although the unequivocal identification of

the latter is problematic, as dicussed, available literature
Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc. 195



Table 1. Murine Pericyte Markers

Pericyte Marker

Gene

Symbol

Examples of Other Cell Types

Expressing the Marker Comments References

Validated Markers

PDGFR-b (platelet-

derived growth factor

receptor-beta)

Pdgfrb Interstitial mesenchymal cells

during development;

smooth muscle; in the CNS

certain neurons and neuronal

progenitors; myofibroblasts;

mesenchymal stem cells

Receptor tyrosine kinase;

functionally involved in

pericyte recruitment during

angiogenesis; useful

marker for brain pericytes

Lindahl et al., 1997;

Winkler et al., 2010

NG2 (chondroitin sulfate

proteoglycan 4)

Cspg4 Developing cartilage, bone,

muscle; early postnatal skin;

adult skin stem cells; adipocytes;

vSMCs; neuronal progenitors;

oligodendrocyte progenitors

Integral membrane

chondroitin sulfate

proteoglycan; involved in

pericyte recruitment to

tumor vasculature

Ozerdem et al., 2001;

Ruiter et al., 1993;

Huang et al., 2010

CD13 (alanyl (membrane)

aminopeptidase)

Anpep vSMCs, inflamed and tumor

endothelium; myeloid cells;

epithelial cells in the kidney,

gut

Type II membrane zinc-

dependent metalloprotease;

useful marker for brain

pericytes

Dermietzel and Krause, 1991;

Kunz et al., 1994

aSMA (alpha-smooth

muscle actin)

Acta2 Smooth muscle;

myofibroblasts;

myoepithlium

Structural protein;

quiescent pericytes do not

express aSMA (e.g., CNS);

expression in pericytes is

commonly upregulated in

tumors and in inflammation

Nehls and Drenckhahn, 1993

Desmin Des Skeletal, cardiac,

smooth muscle

Structural protein; useful

pericyte marker outside

skeletal muscle and heart

Nehls et al., 1992

New Markers Requiring Additional Validation

RGS5 (regulator of

G protein signaling 5)

Rgs5 Cardiomyocytes?; vSMCs Regulate heterotrimeric

G proteins by activating

GTPase activity; angiogenic

pericyte marker

Bondjers et al., 2003;

Cho et al., 2003

SUR2 (ATP-binding

cassette, subfamily

C (CFTR/MRP),

member 9)

Abcc9 Skeletal, cardiac, smooth

muscle; renal tubular

epithelium

Regulatory subunit of

ATP-sensitive potassium

channels

Bondjers et al., 2006

Kir6.1 (potassium

inwardly rectifying

channel, subfamily J,

member 8)

Kcnj8 vSMCs Associates with SUR2 Bondjers et al., 2006

Endosialin Cd248 vSMCs, myofibroblasts;

fibroblasts; T cells

Transmembrane cell

surface glycoprotein;

expression on pericytes

is dynamic; downregulated

during development

Christian et al., 2008

DLK1 (delta-like

1 homolog)

Dlk1 vSMCs; hepatoblasts in the

developing liver; adipocyte

progenitors

Transmembrane cell

surface protein

Bondjers et al., 2006

Transgenic Markers

XlacZ4 vSMCs, skeletal muscle

progenitors during

development

Expresses nuclear beta-

galactosidase in pericytes

and vSMCs; downregulated

in association with injury

Tidhar et al., 2001

NG2 dsRED vSMCs, oligodendrocyte

progenitors

BAC-transgene; reposited

in the Jackson Laboratory,

stock #008241

Zhu et al., 2008
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Figure 3. Developmental Origin of Mural Cells
Ectoderm-derived neural crest gives rise to vSMCs and pericytes in the CNS
and thymus (light blue). Mural cells in coleomic organs are all mesoderm- and
mesothelium-derived (violet). Epicardial mesothelium gives rise to mural cells
in heart, lung mesothelium to pericytes in the lung, etc. Note that vSMC
coverage around aorta has a multiple developmental origins, indicated by
different colors (yellow, secondary heart field; light blue, neural crest; green,
somite).
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Figure 4. Signaling Pathways Mediating Mural Cell Recruitment,
Differentiation, and Vascular Stabilization
Pericyte recruitment to the endothelium is mediated by multiple ligand-
receptor complexes: PDGF-B/PDGFRb, SDF-1a/CXC4R, HB-EGF/ErbB,
Shh/Ptc, and Ang1/Tie-2. The cellular response to TGFb/TGFbR signaling axis
is dependent on the composition of the receptor and the relative level of the
ligand. A ligand-receptor pair is indicated by the same color. N-cadherin and
Notch-mediated vessel stabilization requires direct contact between a peri-
cyte and an endothelial cell. Note that some signaling pathways are currently
only proposed to be relevant for pathological angiogenesis (see text for
details).
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suggests common lineages for vascular mural cells in any given

organ. The mentioned studies also point to close ontogenic rela-

tionships between mural cells and fibroblasts in many organs,

supporting current ideas of such relationships also in patholog-

ical situations (discussed below). In spite of a mesothelial origin

of pericytes in diverse organs such as heart, lung, liver, and gut,

the signaling mechanisms that govern their recruitment into their

final periendothelial location may be different. This is exemplified

by the importance of PDGF-B/PDGFRb signaling (further dis-

cussed below), which has been demonstrated in heart, lung,

and gut, whereas the development of hepatic stellate cells (liver

pericytes) occurs independently of PDGF-B/PDGFRb (Hellström

et al., 1999). A similar distinction has beenmade for neural-crest-

derived pericytes, which depend on PDGF-B/PDGFRb signaling

in the CNS (Lindahl et al., 1997), but not in the thymus (Foster

et al., 2008).

Whereas some insights have thus been obtained into the

embryonic origin of pericytes in different organs, much less is

known about how pericytes grow and spread along growing

vessels in conjunction with developmental angiogenesis. Peri-

cytes proliferate during angiogenesis in the CNS and in vitro,

and the seeming lack of immature mesenchyme in the devel-

oping CNS would imply that new pericytes develop mainly by

proliferation of pre-existing ones in this organ. However, to

what extent new pericytes develop by division of pre-existing

pericytes—by recruitment (proliferation, migration, and differen-

tiation) from pre-existing vSMCs on neighboring large vessels

and/or by differentiation from immature mesenchyme, or

both—in most other organs are issues that are presently not

definitively resolved. The same holds true for the question about

ontogenetic relationships between pericytes and vSMCs. The
continuum of mural cell phenotypes observed along terminal

arterioles, capillaries, and postcapillary venules might suggest

that these cells can differentiate into each other in conjunction

with vessel growth and remodeling, but this also requires further

investigation.
Signaling Pathways Implicated in the Development of
Pericytes and Their Interaction with Endothelial Cells
As discussed above, the anatomical relationship between peri-

cytes and endothelial cells suggests close interactions involving

paracrine or juxtacrine signaling (Figure 4). Endothelial-pericyte

signaling has recently been reviewed in detail (Gaengel et al.,

2009). Below we cover briefly this area and point out recent

advances in the understanding of how different intercellular sig-

naling pathways play a role in vascular development and

stability.

PDGF-B/PDGFRb

PDGF-B is released from angiogenic endothelial cells and binds

to PDGFRb expressed on the surface of developing pericytes. As
Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc. 197
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a result, PDGFRb-positive pericytes (or their progenitors) are

corecruited with the angiogenic sprouts. PDGFRb is expressed

broadly on developing vSMCs, and PDGF-B probably plays a

role also in the proliferation and differentiation of aortic and

venous vSMCs. Knockout of the pdgfb or pdgfrb genes in

mice results in virtually identical phenotypes and perinatal

lethality resulting from vascular dysfunction caused by mural

cell deficiency (Levéen et al., 1994; Soriano, 1994). The degree

of this deficiency varies extensively between different organs,

suggesting that other signaling pathways may play a similar

role to that of PDGF-B/PDGFRb in mural cell recruitment. For

example, whereas the lack of pericytes in the brain, kidney,

lung, heart, and skin of pdgfb or pdgfrb knockout mouse

embryos is near total, the liver pericytes (stellate cells) are seem-

ingly unaffected (Hellström et al., 1999; Lindahl et al., 1997). As

discussed below, recent work suggests candidates for alterna-

tive endothelial-to-pericyte signaling pathways mediating peri-

cyte recruitment.

PDGF-B expression is not uniform in the developing endothe-

lium. Tip cells show higher PDGF-B expression than stalk cells.

Pericytes are immediately attracted to emerging angiogenic

sprouts and are usually lagging only slightly behind the tip cells

(Gerhardt and Betsholtz, 2003). Developing arteries also express

higher levels of PDGF-B mRNA than corresponding veins in

correlation with the thickness of the mural cell coat. However,

the importance of differential levels of PDGF-B expression in

different endothelial cells is uncertain. The phenotype of a

complete pdgfb knockout was rescued by re-expression of

PDGF-B in endothelial cells from the Rosa26 promoter (Armulik

et al., 2010), which would be assumed to provide similar levels of

PDGF-B expression in all endothelial cells.

Once secreted, PDGF-B is normally bound to the extracellular

matrix (reviewed by Andrae et al., 2008). This binding is con-

ferred by a C-terminal retention motif (Ostman et al., 1991),

which has affinity for heparin and heparan sulfate proteoglycans

(HSPGs) (Abramsson et al., 2007; Kurup et al., 2006). Targeted

deletion of the retention motif in mice (pdgfbret/ret) leads to hypo-

plasia and partial detachment of pericytes (Lindblom et al.,

2003), suggesting that PDGF-B needs to be presented as a

cell surface or matrix-bound factor in order to exert a proper

signal for pericyte recruitment to the vessel wall. This scenario

is supported by global reduction of N-sulfated heparan sulfate

generated by knockout of the N-deacetylase/N-sulfotransferase

(NDST)-1 enzyme, which leads to a delay in recruitment and

partial detachment of pericytes (Abramsson et al., 2007). Prob-

ably, endothelial HSPGs are critical since pericyte-specific abla-

tion of heparan sulfate did not interfere with pericyte recruitment

into the developing CNS (Stenzel et al., 2009).

Although most studies have focused on embryonic develop-

ment, there is also evidence that PDGF-B/PDGFRb signaling

plays a role postnatally. Constitutive activation of PDGFRb by

targeted insertion of an activating mutation in the pdgfrb locus

in mice was shown to promote proliferation and inhibit differen-

tiation in mural cells (Olson and Soriano, 2011), leading to post-

natal phenotypes that are further discussed below. The impor-

tance of PDGF-B for pericyte recruitment to tumors is also

discussed below. A recent report suggests that PDGF-B medi-

ates mural cell recruitment and vessel maturation in response

to the drug thalidomide in patients with hereditary hemorrhagic
198 Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc.
telangectasia and in mouse models of the disease (Lebrin

et al., 2010). Thalidomide has previously been proposed to

have antiangiogenic activities, but conflicting data have been re-

ported regarding these effects and mechanisms have not been

elucidated (Bauer et al., 1998).

TGFb

TGFb signaling has been implicated in the induction of mural cell

formation from undifferentiated mesenchyme, in mural cell pro-

liferation and differentiation, and in the regulation of endothelial

cell proliferation and differentiation. Both endothelial cells and

mural cells express TGFb, but its activation from a latent proform

appears to require collaboration between the two cell types (Sato

and Rifkin, 1989). Likewise, TGFb receptors are expressed on

both cell types. Thus, the role of TGFb signaling in vascular devel-

opment, maintenance, and function is complex. It is difficult to

sort out the primary roles of TGFb signaling in each cell compart-

ment, since they are interdependent, and as an inevitable con-

sequence, affecting one will secondarily affect the other. A large

number of studies ranging from in vitro models using single cell

typesor cocultures to in vivowork utilizinggain- and loss-of-func-

tion genetic approaches have demonstrated the pivotal role of

TGFb signaling,membersof theTGFb signalingpathway, andup-

steam regulators and modifiers of TGFb signaling in vascular

development (reviewed by Gaengel et al., 2009).

Two distinct type I TGFb receptors—activin receptor-like

kinase (Alk)-1 and Alk-5—are expressed in both endothelial

cells and mural cells and the two receptors appear to trigger

different—even opposing—cellular effects (Goumans et al.,

2002, 2003; Oh et al., 2000). Activation of Alk-5 in mesenchymal

cells leads to phosphorylation of Smad2/3-promoting mitotic

and migratory quiescence and differentiation into SMC. Activa-

tion of Alk-1 on the other hand leads to phosphorylation of

Smad1/5 and the induction of target genes that promote cell

proliferation and migration, and it opposes SMC differentiation

(Chen et al., 2003; Goumans et al., 2002; Ota et al., 2002). In

endothelial cells, a complex interplay between Alk-1 and Alk-5

signaling has been suggested, in which Alk-1 inhibits Alk-5,

whereas Alk-5 at the same time is required for Alk-1 signaling.

Overall, Alk-5 seems to promote vessel maturation, whereas

Alk-1 has the opposite effect. The net effect of TGFb may

depend on the relative levels of Alk-1/5 expression but also on

the strength and duration of the TGFb signal. Alk-1 signaling

may dominate in the early phase of TGFb stimulation, leading

to cell proliferation and migration, whereas Alk-5 signaling domi-

nates later, leading to cell differentiation and extracellular matrix

production. Knockout of most of the different TGFb signaling

pathway genes in mice, e.g., tgfb1 (Dickson et al., 1995), alk1

(Urness et al., 2000), alk5 (Larsson et al., 2001), tgfbr2 (Oshima

et al., 1996), smad4 (Lan et al., 2007), smad5 (Chang et al.,

1999; Yang et al., 1999), and endoglin (Li et al., 1999), leads to

embryonic lethality at midgestation with severe vascular abnor-

malities, including remodeling defects in the yolk sac vascula-

ture, arterio-venous anastomoses, defective formation of mural

cells, and—in some mutants—defective hematopoiesis. In hu-

mans,mutations inENDOGLIN,ALK1, andSMAD4 cause hered-

itary hemorrhagic telangiectasia, which are autosomal-dominant

disorders in which vascular malformations arise through the

formation of small-caliber vessel arterio-venous anastomoses

(Berg et al., 1997; Gallione et al., 2004; McAllister et al., 1994).
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The knockout of several different proteins appears to influence

TGFb signaling, thereby leading to vascular defects, including

inappropriate formation of a mural cell coat. This includes con-

nexins (Cx) 43 and 45, implicating the importance of gap junc-

tions for TGFb signaling in vascular development (Hirschi et al.,

2003; Krüger et al., 2000). Studies on Cx43-deficient mesen-

chymal cells indicate that these cells had lost their ability to

produce active TGFb when cocultured with endothelial cells

and as a result failed to differentiate into a mural cell phenotype.

Likewise, several studies implicate integrins as critical regulators

of TGFb activation (Cambier et al., 2005). The role of integrins in

this process may involve the recruitment of MMPs to activate

latent TGFb (Cambier et al., 2005) or the direct liberation of active

TGFb through conformational changes of the latent TGFb com-

plex (Wipff and Hinz, 2008), a process recently proposed to in-

volve cell constriction-mediated tensile force across pro-TGFb

(Shi et al., 2011). Knockout of the orphan G protein-coupled

receptor gene grp124 in mice causes defective cerebral angio-

genesis and hemorrhage (Anderson et al., 2011; Cullen et al.,

2011; Kuhnert et al., 2010). TGFbwas demonstrated to stimulate

GPR124 expression, and molecular profiling of the gpr124

knockout vasculature revealed perturbed TGFb pathway activa-

tion, together suggesting a close crosstalk between GPR124

and TGFb (Anderson et al., 2011).

TGFb pathway proteins also interact with other key vascular

signaling pathways. Brain endothelium-specific knockout of

smad4 was recently shown to result in brain vascular defects,

involving increased endothelial proliferation, vascular dilation,

and reduced mural cell coverage (Li et al., 2011). This was con-

nected to reduced vascular expression of N-cadherin, a cell

adhesion molecule believed to mediate heterotypic cell contacts

between endothelial cells and pericytes (Gerhardt and Betsholtz,

2003; Gerhardt et al., 2000). It was further demonstrated that

TGFb and Notch signaling in endothelial cells cooperate in the

regulation of N-cadherin expression through direct interactions

of their transcriptional effectors on the N-cadherin promoter (Li

et al., 2011). Interestingly other signaling pathways may also

converge at the regulation of vascular N-cadherin. Binding of

plasma-borne bioactive lipid sphingosine-1-phosphate to the

endothelial-specific G protein-coupled receptor S1P1 (Edg1) is

critical for the mural cell recruitment to the developing dorsal

aorta and its proximal branches (Allende and Proia, 2002;

Allende et al., 2003; Liu et al., 2000). Possibly, this effect is medi-

ated by altered trafficking of endothelial cadherins VE- and

N-cadherin (Lee et al., 1999; Paik et al., 2004). Thus, several sig-

naling pathways known to be important for vascular maturation

(TGFb, Notch, and S1P) appear to regulate N-cadherin in hetero-

typic cell interactions between endothelial cells and pericytes.

Angiopoietin-1/Tie-2

Angiopoietin-1 (Ang-1) is expressed by perivascular mesen-

chymal cells (Davis et al., 1996), including pericytes (Sundberg

et al., 2002), whereas its main receptor, Tie-2, is predominantly

expressed on endothelial cells (Dumont et al., 1993). Thus, the

suggested Ang-1/Tie-2 paracrine loop has reciprocal orientation

in comparison with PDGF-B/PDGFRb and has been proposed to

mediate endothelial maturation and stability (Falcón et al., 2009;

Gaengel et al., 2009) and reduce vascular leakage (Thurston

et al., 1999). Tie-2 expression has also been demonstrated in

subtypes of monocytes and macrophages (De Palma et al.,
2005) and on certain pericytes (Cai et al., 2008b), potentially

complicating the picture of cellular interactions.

Ang1 or tie2 null mice develop cardiovascular defects and die

in utero around midgestation (Dumont et al., 1994). Morpholog-

ical analyses of ang1 and tie2 null embryos have demonstrated

a lack of mural cells (Patan, 1998; Suri et al., 1996). In humans,

mutations of the TIE2 gene lead to venousmalformation, a condi-

tion involving focal loss of venous mural cells (Vikkula et al.,

1996). A role for Tie-2 in pericyte recruitment and/or mainte-

nance is also suggested by the effects of local overexpression

of the Tie-2 antagonist Ang-2 (potentially inhibiting Ang-1-medi-

ated vascular stabilization), which leads to pericyte loss

(Hammes et al., 2004).

How the mural cell defects arise in situations of ablated or in-

hibited Ang-1/Tie-2 signaling remains unclear, however. Anal-

ysis of mouse chimeras of normal and tie2 null cells showed

that pericytes were recruited to Tie-2-negative endothelium

(Jones et al., 2001). Also, mice carrying signaling-deficient

Tie-2 receptors showed pericyte recruitment to new vessels in

spite of defective cardiac, hematopoietic, and endothelial devel-

opment (Tachibana et al., 2005). Likewise, conditional knockout

of ang1 showed that this gene is not required for pericyte recruit-

ment (Jeansson et al., 2011).

Thus, whereas Ang-1 and Tie-2 do not seem to be directly

involved in pericyte recruitment, several publications support

to the notion that pericyte-derived Ang-1 has important roles in

blood vessel formation and/or stability. Ang-1 overexpression

or administration results in increased vascular branching and re-

modeling of an immature vessel plexus into a higher-order hier-

archical structure (Thurston et al., 2005; Uemura et al., 2002).

Ang-1 expression (in pericytes) was recently demonstrated to

be dependent on the chicken ovalbumin upstream promoter-

transcription factor II (COUP-TFII), and conditional ablation of

couptf2 in adult mice led to compromised neoangiogenesis in

tumors and matrigel plugs (Qin et al., 2010). In addition, Ang-1

expression from hematopoietic cells appears to have a critical

role in angiogenesis, pericyte recruitment, and vascular stabili-

zation, as demonstrated in aml1 and hematopoietic cell-specific

zeb2 transcription factor gene knockout mice (Goossens et al.,

2011; Takakura et al., 2000). A recent study demonstrated that

cardiac-specific ang1 deletion reproduced the full knockout

phenotype and, moreover, that complete deletion after E13.5

was tolerated in the developing vasculature but produced de-

fects in situations of injury or vascular stress (Jeansson et al.,

2011). A tentative model consistent with most available data is

that Ang-1 produced by mesenchymal cells, including pericytes,

cardiomyocytes, hematopoietic cells, and possibly other cells

types, provides stabilizing signals to the endothelium that re-

duce vascular permeability and increase higher-order structure,

quiescence, and functionality of the vessel network during

cardiac development and in conjunction with vascular injury.

Other Signaling Pathways Implicated

in Endothelium-Pericyte Crosstalk

As discussed above, other signaling pathways than PDGF-B/

PDGFRb may exert a role as in mural cell recruitment in an

organ-specific or compensatory way. One such pathway is

heparin-binding epidermal growth factor (HB-EGF) signaling

through EGF receptors (ErbBs). Several studies indicate that

HB-EGF is essential for cardiovascular development (Iwamoto
Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc. 199
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et al., 2003;Nanbaet al., 2006). HB-EGFhas alsobeen suggested

to protect against the loss of pericytes from intestinal vessels

following mesenteric artery occlusion, possibly by induction of

pericyte proliferation and protection of the cells from oxidative

stress (Yu et al., 2010). The role of HB-EGF in mural cell biology

has been addressed mechanistically in vitro. In a cell coculture

model, HB-EGF expressed by endothelial cell was shown to

promote migration of vSMCs via ErbB1 and ErbB2 receptor

expression on vSMCs (Iivanainen et al., 2003). In this model,

HB-EGF expression on endothelial cells was enhanced by Ang-1,

suggesting that Ang-1 may promote pericyte recruitment

through HB-EGF. Analysis in more complex three-dimensional

in vitromodelsof angiogenesis inextracellularmatricesconfirmed

the importance of endothelium-derived HB-EGF and ErbB1 and

ErbB4 for pericyte recruitment (Stratman et al., 2010). Moreover,

the combined inhibition of PDGF-BB and HB-EGF in quail em-

bryos led to reduced pericyte recruitment and vascular pheno-

types reminiscent of those observed in mouse PDGF-B/PDGFRb

null embryos, suggesting that PDGF and EGF pathways may

collaborate in pericyte recruitment (Stratman et al., 2010). Addi-

tional support for a crosstalk between PDGF and EGF signaling

comes from studies of the ADAM17 protease, which releases

active HB-EGF from its transmembrane precursor (Sahin et al.,

2004). PDGFRb stimulates ADAM17 in cultured fibroblasts,

leading to proteolytic activation of EGFR ligands and stimulation

of EGFR signaling (Mendelson et al., 2010). ADAM17 is required

for vascular development and probably has a broad role in the

activation of substrates important for endothelial development

(Canault et al., 2010; Weskamp et al., 2010); however, it also

seems critical for mural cell recruitment (Canault et al., 2010).

Another pathway recently implicated in pericyte recruitment is

stromal-derived factor 1-a (SDF-1a)/CXCR4. SDF-1a promotes

pericyte migration in vitro and in a tumor xenograft model in vivo

(Song et al., 2009). Also for this signaling pathway a crosstalk

with PDGF-B/PDGFRb was suggested, since SDF-1a expres-

sion was shown to be stimulated by PDGF-B (Song et al.,

2009). Additional evidence for an involvement of a SDF-1a/

CXCR4 axis in pericyte recruitment was recently provided by

the demonstration in vitro that SDF-1a acts synergistically

together with hematopoietic cytokines SCF and IL-3 to mediate

endothelial tube formation and maturation, including pericyte

recruitment and vascular BM assembly (Stratman et al., 2011).

Analyses in mouse and avian embryos have demonstrated

a role for sonic hedgehog (Shh) signaling in vasculogenesis

(Vokes et al., 2004). Recent work also implicates Shh signaling

in pericyte recruitment in plexus choroideus formation (Nielsen

and Dymecki, 2010). The invading plexus choroideus pericytes

express theShh receptorPatched (Ptc), suggesting thatpericytes

are directly targeted by the Shh signal. The role of Shh/Ptc in

plexus choroideus formation resembles the role for PDGF-B/

PDGFRb in the development of glomerular pericytes (mesangial

cells) (Lindahl et al., 1998). Moreover, in both organs pericytes

appear to play a critical role in the formationof a specializedcapil-

lary network dedicated for plasma filtration (in the formation of

primary urine and cerebrospinal fluid, respectively). A possible

role for Shh signaling in mural cell regeneration has been impli-

cated through the demonstration that a population of vSMC

progenitors present in the adventitial layer of the arterial wall is

absent in Shh null mice (Passman et al., 2008). Recent studies
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also implicate Shh signaling in the recruitment of ‘‘perivascular

support cells’’ in zebrafish embryos. Analyses of hedgehog (Hh)

inhibitor-treated and Hh pathway mutant fish embryos demon-

strated detachment of the support cells and brain hemorrhage

(Lamont et al., 2010). Reduced Ang-1 expression is a possible

mediator of the defects, suggesting interactions between the

Hh and Ang-1/Tie-2 signaling pathways. Although the identity of

the perivascular support cells and their relationship to mural cells

remain poorly defined in zebrafish, recent work implicates the

existence of mural cells in fish embryos (Santoro et al., 2009).

Notch signaling has major roles in endothelial cells and is crit-

ically required for arteriogenesis and angiogenic sprouting (re-

viewed in Chappell and Bautch, 2010; Sainson and Harris,

2008). Notch signaling also plays a role inmural cells and in endo-

thelial-mural interactions. NOTCH3 is mutated in the human

stroke and dementia syndrome CADASIL (cerebral autosomal-

dominant arteriopathy with subcortical infarcts and leukoence-

phalopathy), which involves focal degeneration of vSMCs (Joutel

et al., 1996; Ruchoux et al., 1995). Analyses of notch3 knockout

mice have revealed an abnormal maturation of arterial vSMCs,

which has been connected to reduced expression of a number

of arterial vSMC markers, including PDGFRb (Domenga et al.,

2004; Jin et al., 2008). Increased expression of Notch3 in mural

cells has also been shown to increase expression of certain

vSMC markers (Liu et al., 2009). A critical Notch ligand in this

context appears to be Jagged-1 (Jag-1) expressed on endothe-

lial cells and induced in pericytes as part of an autoregulatory

loop of Jag-1/Notch3 expression in these cells (Liu et al., 2009).

Analysis of angiogenesis in the retina suggests a role for Notch3

in mural cell recruitment and implicates Ang-2 expression by the

mural cells as a possible mediator of Notch3-induced vessel

maturation (Liu et al., 2010). How this works is unclear, since

other studies have implicated Ang-2 as a vessel-destabilizing

factor, promoting pericyte loss (Hammes et al., 2004). In sum-

mary, however, there is accumulating evidence for a role of

Jag-1 andNotch3 signaling in endothelial-mural cell interactions.

Ephrin-Eph receptor signaling plays major roles in endothelial

cells but has also been implicated in mural cell biology. A mural

cell-specific knockout of ephrin-B2 resulted in poor association

of vSMCs and pericytes with vessels of different sizes (Foo et al.,

2006). In capillaries, pericytes made only loose connections with

the endothelial cells and were surrounded by abnormal extracel-

lular matrix deposits. How Ephrin-B2 in mural cells acts to

generate these defects is not fully clear. Eph receptor engage-

ment in endothelial cells andmural cells may play a role (Salvucci

et al., 2009), but migration defects in single Ephrin-B2-deficient

mural cells in vitro point to important cell-autonomous functions

of Ephrin-B2 in mural cells connected to the formation of focal

adhesions (Foo et al., 2006). Interestingly, ablation of the focal

adhesion protein a-parvin was recently demonstrated to lead

to contraction or migration defects in mural cells and a defective

mural cells association to vessels resembling the phenotype of

mural cell-specific ephrinb2 knockouts (Montanez et al., 2009).

Physiological Functions of Pericytes
Role of Pericytes and Brain Vascular Permeability

and the Formation of the Blood-Brain Barrier

An abnormally increased vascular permeability is associated

with many severe pathological conditions, including sepsis,
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Figure 5. Pericytes at the Blood-Brain Barrier
(A) Traits of the mammalian BBB controlled by pericytes. The circle depicts
four main traits of brain endothelium that collectively shield brain tissue: cell-
cell junctions, SLC-transporters, low rate of transcytosis, and ABC trans-
porters. The tightly sealed junctions restrict paracellular diffusion of most
blood-borne substances. Transporters (SLC and ABC) mediate influx of
essential polar molecules and efflux of xenobiotics. Transcytosis (adsorptive-
or receptor-mediated) mediates selective passage of proteins. The traits
develop at separate developmental stages depicted as bended arrows
(E, embryo; A, adult), where gray color indicates relative immaturity and red
relative maturity. The CNS pericytes are important for establishing the low
transcytosis rate of brain endothelial cell, as indicated by a blue arrow. In
addition, pericytes regulate the architecture of endothelial cell-cell, and
possibly also the expression of ABC transporters.
(B) Cellular components of the neurovascular unit. Presented is a schematic
cross-section of a brain capillary. The abluminal side of endothelium (E, blue) is
faced by a pericyte (P, pink) with which it shares BM (light brown). The entire
abluminal side of the vessel basement membrane is surrounded by astrocyte
endfeet (AEF, green). The endothelial and/or pericyte surface is contacted by
resident microglia (M, violet) and nerve endings (NE, red).
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lung edema, and allergic reactions (reviewed by Wang and

Dudek, 2009). The normal capillary bed also differs in its perme-

ability in an organ-specific fashion. This primarily reflects differ-

ences in the specific characteristics of the endothelial cells. The

vasculature of the CNS possesses characteristics that result in

an ‘‘extreme’’ tightness of the vascular bed—the blood-brain

barrier (BBB)—which is a functional term denoting that the

healthy CNS vasculature is impermeable to the passive trans-

port of cells, proteins, and bioactive compounds present in the

blood. The BBB is a multicomponent system, the molecular

and structural complexity of which has only recently become

appreciated (reviewed in Abbott et al., 2010; Zlokovic, 2008)

(Figure 5).

Recent work has uncovered a critical role for pericytes in the

maturation and maintenance of the BBB (Armulik et al., 2010;

Bell et al., 2010; Daneman et al., 2010). The brain vessels thus

appear to harbor specialized pericytes, or alternatively they

respond topericyte signalsdifferently compared toother vessels.

Although pericyte diversity is still rather unexplored territory,

there are already indications that certain pericyte markers may

be brain specific (Bondjers et al., 2006; Heglind et al., 2005). As

discussed above, the CNS vasculature shows the highest peri-

cyte coverage among all analyzed organs. In addition, the brain

vasculature is 100% covered by glial cell processes formed by

astrocytes (astrocyte endfeet). The term neurovascular unit

(NVU) is often used to denote the CNS vasculature and its struc-

tural and functional connections to the neural tissue. Besides

endothelial cells, pericytes, and astrocyte endfeet, the NVU

includes microglia and neurons, which both contact blood

vessels by fine cytoplasmic processes (Figure 5). Therefore,

when the CNS vasculature is studied, the cellular and molecular

complexity of vessel-tissue interface needs to be taken into
account. Currently used in vitro models of brain vasculature do

not recapitulate the NVU complexity in vivo.

When and how do pericytes come into play in BBB develop-

ment? Previous review literature discusses the idea that peri-

cytes regulate the BBB at the level of endothelial junctions

(Abbott et al., 2010, 2006; Cardoso et al., 2010; Lai and Kuo,

2005). This conclusion is based on in vitro coculture studies

where pericytes were shown to increase the transendothelial

electrical resistance (TEER) of endothelial cell monolayers

(Al Ahmad et al., 2009; Dohgu et al., 2005; Hayashi et al., 2004;

Hori et al., 2004; Nakagawa et al., 2009). To what extent TEER

in vitro reflects the tightness of brain endothelial junctions and

the BBB in vivo is unclear, however, as lung pericytes increase

TEER in endothelial cultures as well (Dente et al., 2001). In addi-

tion, conflicting results on the effects of pericytes on TEER have

been reported (Zozulya et al., 2008). The majority of published

studies on the BBB are focused on the endothelial junctions,

which are a critical but not the only endothelial component of

the BBB. Additionally, brain endothelial transcytosis is sup-

pressed (reviewed in Smith and Gumbleton, 2006). This has

been documented, yet without an understanding of how this

process is regulated and when during the development it is

downregulated.

Two recent studies addressing the role of pericytes in the brain

vasculature challenge the ‘‘in vitro view’’ of pericytes regulating

the permeability of endothelial cell-cell junctions (Armulik et al.,

2010; Daneman et al., 2010). These studies were performed on

mouse models deficient in pericytes through genetic manipula-

tion of the PDGF-B/PDGFRb signaling pathway (see above).

One of the studies, performed in a neurobiology lab (Daneman

et al., 2010), asked which cell types are important for the devel-

opment of the BBB during embryogenesis. The other study was

performed in a vascular biology lab (Armulik et al., 2010) and ad-

dressed the function of pericytes in the adult mouse. Both

studies independently concluded that pericyte deficiency

caused increased brain vessel permeability, the extent of which

correlated directly with the density of brain pericytes. They also

found, somewhat unexpectedly, that the basis for the increased

permeability was upregulated endothelial transcytosis (Figure 6).

Finally, both studies demonstrated that the absence of pericytes

did not result in a general loss of the brain endothelial molecular

signature.

Currently it is unknown what type of endothelial transcytosis

and which molecular pathway(s) are deregulated in the peri-

cyte-deficient brain vessels. Microarray analysis of pericyte-

deficient blood vessels identified several deregulated genes

previously implicated in the regulation of endothelial perme-

ability, including vegfa, ang2, and adrenomedullin (all up in the

pericyte-deficient state) and ang1 (down in the pericyte-deficient

state) (Armulik et al., 2010; Daneman et al., 2010). The expres-

sion levels of ang1, ang2, and vegfa are consistent with the

increased vascular permeability. Adrenomedullin, on the other

hand, has well-documented protective effects on endothelial

barrier function in several organs (reviewed in Temmesfeld-Woll-

brück et al., 2007), and its strong upregulation in the pericyte-

deficient state may reflect a compensatory mechanism. All of

the abovementioned signaling molecules have been reported

to regulate permeability by modulating endothelial cell-cell

junctions; only VEGF has been connected to increased
Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc. 201
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Figure 6. Changes at the NVU in the
Pericyte-Deficient State
In the absence of pericytes (P, orange), the
endothelium (E, green) shows convoluted junc-
tions (J) and increased endothelial macro-
vesicular uptake (red vesicles; black arrowheads)
and release their content to brain parenchyma
(red arrowheads). Pericyte-deficiency affects
polarization of astrocyte endfeet (AF, blue),
shown by mislocalization of aquaporin-4 (Aqp4,
red) and altered deposition of astrocyte-derived
BM (aBM, dark brown). Deposition of endothe-
lium-derived BM (eBM, light brown) is not
affected in pericyte deficiency. Upregulation of
leukocyte adhesion molecules (only ICAM-1 is

depicted) on endothelium causes increased attachment of leukocytes (L, dark blue) in the lumen of pericyte-deficient blood vessels. The release of intra-
venously administered tracers into the brain parenchyma is inhibited by Imatinib treatment. Adapted from Armulik et al. (2010).
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transendothelial permeability by inducing so-called vesiculo-

tubular organelles (reviewed in Mehta and Malik, 2006). In

general, the regulation of endothelial permeability is complex

and dissection of the role of each candidate protein in peri-

cyte-deficient mice will require further work.

Absence of brain pericytes seems to upregulate a transcytosis

pathway that does not discriminate between different types of

molecules and sizes (Armulik et al., 2010). In addition, the peri-

cyte-deficient animals demonstrated defects in the polarization

of astrocyte endfeet (Armulik et al., 2010), indicating that peri-

cytes influence the development of the NVU at multiple levels.

The treatment of pericyte-deficient mice with the drug Imatinib

halted the extravasation of tracers without correcting pericyte

coverage or astrocyte polarization defects. The administred

tracers accumulated in endothelial vesicles, however, indica-

ting that Imatinib blocked the endothelial release (exocytosis),

not uptake (endocytosis), of the tracers (Armulik et al., 2010)

(Figure 6). The specific target of the Imatinib involved in this

process is currently unknown. Imatinib is a tyrosine kinase inhib-

itor with broad substrate specificity and several reported off-

target effects (Cataldi et al., 2004; He et al., 2010; Netzer et al.,

2003).

Interestingly, increased endothelial transcytosis has been

reported to occur during several pathological conditions (re-

viewed in Nag et al., 2011). There are reports indicating that early

BBB damage is associated with increased transcytosis, whereas

the loss of endothelial junctional integrity takes place later (Nag

et al., 2011). Coincidentally, pericytes have been described to

leave the vessel wall during several pathological conditions

(e.g., tumors, trauma, sepsis, diabetic microangiopathy, and

fibrosis (further discussed below). The pathogenic significance

of pericyte dropout from the vessel wall is currently unknown

but one might speculate on a role in increased endothelial

permeability. Recent work also suggests that progressive peri-

cyte loss in the brain and subsequent increase of vessel perme-

ability may promote neurodegeneration in aging mice (Bell et al.,

2010).

Do Pericytes Regulate Blood Flow?

Capillary constriction, the first function suggested for pericytes,

was largely based on indirect evidence (reviewed in Dı́az-Flores

et al., 2009; Hamilton et al., 2010; Puro, 2007). As imaging tech-

niques have evolved, pericyte-mediated capillary constriction in

response to vasoactive substances and neurotransmitters has

been observed in some situations in vivo and in organ cultures
202 Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc.
ex vivo. For a detailed description of molecular pathways

engaged in response to vasoactive molecules and neurotrans-

mitters in a ‘‘generic’’ pericyte, leading to capillary constriction

or dilation, the reader is referred to recent review articles on

the topic (Attwell et al., 2010; Hamilton et al., 2010).

What is the physiological relevance of pericyte contractility? In

the brain, the regional blood flow increases in response to

increased local neuronal activity. This process, called functional

hyperemia, is neurotransmitter mediated and occurs at the level

of arterioles (reviewed in Attwell et al., 2010). The demonstration

of pericyte-mediated constriction of capillaries ex vivo in cere-

bellar brain slices and retina preparations may suggest capil-

lary-mediated control of blood flow in the CNS as well (Peppiatt

et al., 2006). A recent study demonstrated pericyte-dependent

capillary constriction in vivo using intravital microscopy (Fernán-

dez-Klett et al., 2010), however, without evidence for capillary-

mediated functional hyperemia. Another study used ex vivo

cerebral slices and in vivo imaging to suggest that pericyte con-

traction caused by oxidative stress after brain ischemia/reperfu-

sion leads to capillary constriction (Yemisci et al., 2009), indi-

cating that pericytes may regulate capillary blood flow in

pathological situations.

Although the aforementioned studies may seem to provide

evidence for pericyte contraction in blood flow regulation,

a number of caveats exist in interpreting the data. First, con-

vincing evidence for blood flow control elicited solely at the capil-

lary level in vivo is still lacking. Second, while the identification of

pericytes is problematic in fixed specimens due to the lack of

specific markers (discussed above), it is even more challenging

in living tissues. In a study of cochlear pericytes, the vasculature

was visualized by labeling with DAF-2DA, an intracellular

detector of NO (Dai et al., 2009), whereas pericytes were distin-

guished by the shape of their cell body. In the other studies, peri-

cytes were also identified by their cell body morphology in beta-

actin-GFP transgenic mice (Fernández-Klett et al., 2010), or

without any labeling (Peppiatt et al., 2006; Yemisci et al.,

2009). This raised concerns about the proper identification of

pericytes and the type of microvessels studied (Vates et al.,

2010). Third, it is unclear whether the long slender pericyte pro-

cesses may generate enough force to constrict a capillary.

Finally, different results have been recorded in the same organ

in vivo and ex vivo (Dai et al., 2009). Clearly, the jury is still out

concerning pericyte contraction and the regulation of blood

flow in physiological and pathophysiological situations.



Developmental Cell

Review
Are Pericytes Mesenchymal Stem Cells Involved

in Tissue Regeneration?

A number of recent studies suggest that pericytes may consti-

tute multipotent stem and/or progenitor cells, such as mesen-

chymal stem cells (MSCs) (Crisan et al., 2008b; Davidoff et al.,

2004; Feng et al., 2011), white adipocyte progenitors (Olson

and Soriano, 2011; Tang et al., 2008), muscle stem cells (Della-

valle et al., 2007), and even neural stem cells (Dore-Duffy et al.,

2006). To discuss this issue, we need to go back 40 years,

when MSCs were identified as fibroblast-like cells, called

CFU-F (colony- forming unit fibroblastic) in human bone marrow

cell cultures seeded at clonal density (Friedenstein et al., 1970).

When heterotopically transplanted, these single-cell-derived

clones generated cartilage, bone, adipose, and fibrous tissue.

The cells were later named bone marrow mesenchymal stem

cells (BM-MSCs), whereas cells with similar lineage potential

for in vitro differentiation (adipocyte, osteoblast, chondrocyte)

subsequently identified in other tissues were referred to as

MSCs. The easy access to MSCs provides prospects for human

regenerativemedicine, but the identity and function of these cells

in vivo remain unclear. Do MSCs strictly fulfill the criteria of

a stem cell, i.e., do they self-renew, and can their progeny differ-

entiate into a functional multiple cell types of a given tissue? The

reader is referred to recent excellent reviews that discuss this

topic (Garcı́a-Gómez et al., 2010; Nombela-Arrieta et al., 2011).

Nearly ten years ago it was shown that MSCs reside in

a vascular niche in bone marrow and dental pulp (Shi and Gron-

thos, 2003). Simultaneously, cultured pericytes were shown to

differentiate in vitro into osteoblasts, adipocytes, chondrocytes,

vSMCs, and skeletal muscle (Collett et al., 2003; Dellavalle et al.,

2007; Doherty et al., 1998; Farrington-Rock et al., 2004).

Together, these observations paved the way for the concept

of a perivascular niche for MSCs (reviewed in Corselli et al.,

2010). Recent work has extended this concept to several other

tissues in addition to bone marrow and dental pulp and provided

further support for the notion that that MSCs derive from peri-

cytes (Crisan et al., 2008a; Crisan et al., 2008b). However,

whereas there is no doubt that MSCs can be isolated from peri-

vascular locations in most—perhaps all—organs (Crisan et al.,

2008b; Dellavalle et al., 2007; Tang et al., 2008), the question

remains whether they are identical to the cells that a vascular

biologist would refer to as pericytes. Usually, conclusions are

based on a small number of pericyte markers, such as NG2

and PDGFRb, which somtimes occur in combination with endo-

thelial markers, such as CD105 and CD34 (Corselli et al., 2010;

Galvez et al., 2008). A detailed discussion about the marker

expression in MSCs and pericytes has been reviewed elsewhere

(Anjos-Afonso and Bonnet, 2011). For example, PDGFRb was

used as a marker to demonstrate a mural cell origin of white

adipocytes (Tang et al., 2008) andmuscle progenitors (Dellavalle

et al., 2007). Consitutive activation of PDGFRb by targetedmuta-

genesis of the endogenous gene inhibited adipogenesis, de-

monstrating the involvement of this pericyte marker protein in

adipocyte differentiation (Olson and Soriano, 2011). However,

as discussed above, PDGFRb is also expressed by certain fibro-

blasts (Andrae et al., 2008; Heldin and Westermark, 1999), and it

is therefore still not entirely clear whether perivascular mesen-

chymal stem or progenitor cells expressing PDGFRb derive

from pericytes proper, or from, e.g., perivascular fibroblasts.
The adventitial layer of larger vessels has been demonstrated

to contain stem cells that have the capacity to generate vSMCs

(reviewed in Ergün et al., 2011; Hoglund et al., 2010). Moreover,

in cases where cells have been sorted by FACS from blood

vessels, the vascular preparations have included vessels of

different caliber and type (i.e., not only pericyte-containing

microvessels), and rigorous analyses on the homogeneity of the

isolated cell population have not been performed. Finally, even

if some pericytes may possess plasticity, it is unsolved whether

all pericytes have the same stem or progenitor cell potential.

The lack of absolutely specific genetic tools for pericyte

labeling limits interpretation of cell sorting data but also the pros-

pects for conclusive fate mapping. A few studies have neverthe-

less been performed using pericyte-expressed Cre recombi-

nase. Pdgfrb-Cre was used to trace white adipocytes to a

mural cell origin, but as already underlined, PDGFRb is ex-

pressed by other mesenchymal cell types as well. A recent study

made use of ng2-Cre and tamoxifen-inducible ng2-CreER mice

to address the ability of pericytes to generate odontoblasts

(Feng et al., 2011). NG2 is also not a completely specific pericyte

marker (Table 1), hence, ng2-Cremice need to be further charac-

terized before it can be concluded to what extent their Cre

expression is restricted to (and efficient in) pericytes in different

organs.

Some reports suggest that pericytesmay have a broader plas-

ticity than the classical MSC repertoire of fates. One such

example is the testosterone-producing Leydig cells present in

the testis mesenchyme. Pericytes have been proposed to act

as a progenitor pool for the regeneration of Leydig cells following

their experimental elimination (Davidoff et al., 2004). The new

Leydig cells appeared close to vessels, and it was therefore

concluded that the progenitor cells are vSMCs and/or pericytes.

However, the perivascular Leydig cell progenitors expressed the

neural/glial marker nestin, raising some doubt as to their identity.

Leydig cells have been proposed to derive from PDGFRa-posi-

tive mesenchymal cells residing in the testis mesenchyme at

perivascular locations (Gnessi et al., 2000). A more surprising

finding, perhaps, is that CNS pericytes are able to generate

self-renewing spheres in vitro with the capacity to differentiate

into neural cell lineages (Dore-Duffy et al., 2006). Similar to other

studies, however, the lack of defining pericytes markers compli-

cates the interpretation also of this study. The purification of peri-

cytes from isolated brain microvessels was based on markers

(NG2 and nestin) also expressed on neural progenitor cells

(Aguirre et al., 2004; Belachew et al., 2003; Lendahl et al.,

1990). There is also strong evidence that neural stem cells reside

in a perivascular niche (Tavazoie et al., 2008). Together with the

issues of marker specificities, this raises doubt concerning the

pericyte origin of the plastic neural cells residing in the vascular

niche. On a more general note, this is also relevant for the inter-

pretation of in vitro data on cultured pericytes, since these are

usually derived from vascular preparations using counterselec-

tion for endothelial cells. Currently, therefore, the origin of both

MSC and pericyte cultures remains unclear in most instances.

A growing number of studies nevertheless demonstrate that

tissue resident stem cells reside in vascular niches, including

neural, hematopoietic, and mesenchymal stem cells (Tavazoie

et al., 2008, and reviewed in Corselli et al., 2010; Ehninger

and Trumpp, 2011; Ergün et al., 2011). During embryonic
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Figure 7. Hypothetic Roles of Pericytes in
Pathology
During pathophysiological processes (inflamma-
tion, fibrosis, tumor growth), pericytes are acti-
vated by a combination of growth factors. In con-
junction with fibrosis, pericytes display changed
marker profiles (indicated in speech balloons),
detachment from the BM, and transdifferentiation
into myofibroblasts (dashed arrow). Detachment
of pericytes causes increased vessel permeability
(bended arrow). Myofibroblasts deposit collage-
nous extracellular matrix. In tumors, tumor peri-
cytes exhibit altered marker expression (indicated
in speech balloons), and modulate trafficking of
inflammatory cells, tumor growth and metastasis
(arrows), endothelial cell normalization, and vas-
cular permeability (bended arrow). The extent of
pericyte-mediated modulation of inflammatory
cells in fibrosis, and pericyte transdifferentiation
into fibroblasts or myofibroblasts in cancer, is
proposed by many studies but is still largely
unclear (indicated by ‘‘?’’).
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development, the developing vasculature has been shown to

have a role in tissue induction that goes beyond the simple

supply of nutrients and oxygen (Lammert et al., 2001; Matsu-

moto et al., 2001). It is perhaps therefore not surprising that the

adult vasculature harbors stem cells that are actively involved

also in tissue repair. Recent studies on liver regeneration indicate

the active role of liver endothelial cells and hepatic stellate cells

in hepatocyte proliferation (Ding et al., 2010; Passino et al.,

2007). During the healing of bone fractures, the invading vascu-

lature was shown to be closely associated with osteoblasts

(Maes et al., 2010). Also, human skin pericytes have been shown

to enhance the regenerative capacity of human dermis in cocul-

ture models by expression of laminin a5 chain, a protein that has

been shown to promote skin regeneration (Paquet-Fifield et al.,

2009).

Pathological Roles of Pericytes
Are Pericytes a Fibrosis-Generating Cell Type?

Fibrosis is a common pathophysiological response of many

tissues to chronic injury. Wound healing and tissue remodeling

and repair are processes normally activated in response to injury

to maintain the original architecture and integrity of tissues and

organs. However, prolonged exposure to the chronic injurious

stimuli causes deregulation of normal processes and result in

an excess deposition of extracellular matrix, scar formation,

and organ failure (reviewed in Kisseleva and Brenner, 2008).

Fibrosis is caused by a cascade of events, including damage

to the epithelium or endothelium, release of TGFb1, recruitment

of inflammatory cells, and activation of myofibroblasts as

collagen-producing cells (Kisseleva and Brenner, 2008).

One of the critical steps in fibrosis progression is the activation

of myofibroblast progenitors. Myofibroblasts are fibroblast-like

cells that express aSMA, deposit pathological extracellular

matrix, and are directly responsible for the extent of fibrosis.

Identifying the origin of the myofibroblasts constitutes a chal-
204 Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc.
lenge (Hinz, 2007). Currently, there are

several hypotheses about the cellular

origin of myofibroblasts, including resi-

dent fibroblasts, fibrocytes, epithelial
cells (following EMT), bone marrow-derived cells, endothelial

cells (following endothelial-to-mesenchymal transition), and

pericytes (reviewed in Powell et al., 2011; Varga and Trojanow-

ska, 2008).

The role of pericytes asmyofibroblast precursors is suggested

by studies of fibrogenesis in the liver (Fabris and Strazzabosco,

2011), kidney (Schrimpf and Duffield, 2011), and systemic scle-

rosis (SSc) (Mahoney et al., 2011; Wei et al., 2011). Recent

studies have used genetic fate mapping to address the origin

of myofibroblasts in fibrosis. While these studies excluded

epithelial cells undergoing EMT as the fibrogenic cell population

in liver fibrosis (Scholten et al., 2010), FoxD1-Cremicewere used

to identify interstitial mesenchymal cells as the myofibroblast

precursors in the kidney. These cells expressed PDGFRb and

CD73, prompting the suggestion that they may be pericytes

(Duffield and Humphreys, 2011; Lin et al., 2008). Whereas

PDGFRb is an accepted pericyte marker, CD73 is reportedly ex-

pressed on leukocytes and endothelial cells (Stagg et al., 2011),

however, raising some doubt about the conclusions. In

summary, while the origin of myofibroblasts is far from being

elucidated, accumulating evidence indicates that pericytes

may constitute a source of myofibroblast progenitors (Figure 7).

Pericytes in Cancer Biology

Pericytes: an obligatory component of the tumor stroma. Tumors

are not only composed of malignant cells. Neoplastic cells

coexist with a variety of extracellular matrix components and

cell types such as fibroblasts, myofibroblasts, endothelial cells,

pericytes, and leukocytes. Together, these components, termed

tumor stroma, build up the microenvironment in which the

cancer cells proliferate. As tumors progress, the stromal

compartment evolves through continuous paracrine interaction

between the tumor cells and stroma cells, and among the

different types of stroma cells themselves. It is now acknowl-

edged that the tumor stroma is an essential component of tumor

growth, invasiveness, and promotion of tumor dissemination
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(Joyce and Pollard, 2009; Polyak et al., 2009). The recognition of

the important functions of the stroma in tumor initiation, growth,

and progression has led to the notion that the tumor microenvi-

ronment influences the therapeutic outcome, as well as provides

opportunities for therapeutic targeting (reviewed by Pietras and

Ostman, 2010).

Pericytes are a ubiquitous part of the tumor microenvironment

(reviewed by Hanahan and Weinberg, 2011). Yet, in contrast to

other tumor stroma cellular components, little is known about

their recruitment, identification, and interaction with other

stromal or tumor cells. Whereas targeting endothelial cells or

cancer-associated fibroblasts might represent a therapeutic

advantage (Pietras and Ostman, 2010), concomitant targeting

of pericytes has unclear therapeutic effects (Hainsworth et al.,

2005; Nisancioglu et al., 2010). In this chapter, we review the

current understanding of tumor pericyte origin, recruitment,

and functions, as well as discuss emerging areas in tumor peri-

cyte research. Finally, we summarize our present understanding

about hemangiopericytomas as tumors arising from pericytes.

Recruitment of pericytes to tumor vessels. As it occurs during

physiological angiogenesis, pericytes are recruited into tumor

blood vessels by PDGF-B/PDGFRb signaling (Abramsson

et al., 2002). In a mouse model of malignant melanoma, overex-

pression of PDGF-B by the tumor cells resulted in increased

recruitment of pericytes and stabilization of the tumor neovascu-

lature (Furuhashi et al., 2004). Tumors grown in pdgfbret/ret mice

show fewer pericytes in the tumor vasculature, as well as

increased detachment of the fewer pericytes present (Abrams-

son et al., 2003; Nisancioglu et al., 2010). Interestingly, the

amount of pericytes but not their proper attachment to the tumor

blood vessels could be partially rescued when tumor cells were

engineered to express PDGF-B (Abramsson et al., 2003), sug-

gesting that an endothelial source of PDGF-B is important for

the proper pericyte investment of tumor blood vessels.

Recent reports suggest a role for HB-EGF in the recruitment of

pericytes to the tumor vasculature in a model of pancreatic

cancer (Nolan-Stevaux et al., 2010) and of pericyte-expressed

EGFR in the development of resistance of antiangiogenic therapy

in a xenograft model of lung carcinoma (Cascone et al., 2011).

Another study reports that SDF-1a may recruit tumor pericytes

via CXCR4 (Song et al., 2009). These studies thus provide

grounds to assume that other factors than PDGF-B might be

directly involved in pericyte recruitment to the tumor vasculature.

When three different tumor models were grown subcutaneously

in the pericyte-deficient pdgfbret/ret mice the reduction in peri-

cytes observed was different for every tumor model studied

(Nisancioglu et al., 2010), suggesting tumor-type-specific

involvement of multiple pathways in pericyte recruitment.

What is the origin of tumor pericytes? Coinjection of mouse

embryonic fibroblasts from XlacZ4 mice with tumor cells into

a subcutaneous space resulted in recruitment of LacZ+ cells

exclusively to perivascular locations in the tumors, suggesting

that pericytes may be recruited from local immature mesen-

chymal cells (Abramsson et al., 2002). Transplantation of GFP+

bone marrow into irradiated mice led to GFP+ cell accumulation

in perivascular locations in a variety of tumor models (Du et al.,

2008; Rajantie et al., 2004). This process appeared to be depen-

dent at least in part on SDF-1a expression (Song et al., 2005).

Although located perivascularly, these NG2-positive cells
expressed additional monocyte markers, such as CD45 or

CD11b. Thus, whether these cells are indeed pericytes, or peri-

vascular fibroblasts or infiltrating monocytes, remains uncertain.

Whereas pericytes are attracted to the tumor neovasculature

by the same means as in developmental angiogenesis, pericyte

investment of tumor blood vessels is clearly aberrant (Morikawa

et al., 2002). The extent of pericyte coverage on tumor vessels is

typically diminished as compared to normal tissues, and peri-

cytes are loosely associated to the endothelial cells, with cyto-

plasmic processes that penetrate deep in the tumor paren-

chyma. The exact causes of the abnormal pericyte behavior in

tumors are still unknown. Tumor hypoxia drives VEGF-A expres-

sion, and while VEGF-A is a potent mediator of endothelial

sprouting and neovascularization, it is not efficient in generating

a mature vascular network (Chen et al., 2007). Also, VEGF-A has

recently been shown to be a negative regulator of pericyte func-

tion and vessel maturation (Greenberg et al., 2008). Thus,

hypoxia-triggered proangiogenic factors might impair pericyte

recruitment and investment of the tumor vasculature by keeping

pericytes in an ‘‘activated’’ state (Raza et al., 2010).

Identification of pericytes in tumors is associated with the

same concerns as during normal development. As mentioned

earlier, tumor pericytes are loosely associated with endothelial

cells, complicating identification of pericytes according to mor-

phological criteria. Electron microscopy shows partial detach-

ment of tumor pericytes (Baluk et al., 2005). Commonly used

immunohistochemical markers for tumor pericytes include

aSMA (Nisancioglu et al., 2010; Ozawa et al., 2005; Sennino

et al., 2007), NG2 (Abramsson et al., 2003), PDGFRb (Ozawa

et al., 2005), desmin (Sennino et al., 2007), RGS5 (Berger et al.,

2005; Nisancioglu et al., 2008), and the XlacZ4 transgenic mouse

(Abramsson et al., 2002) (Figure 7). ASMA is often absent in

quiescent pericytes in normal tissues (Table 1), notably in the

CNS. However, aSMA is readily detected in pericytes in patho-

logical conditions such as tumor angiogenesis, tissue fibrosis,

and inflammation (Gerhardt and Betsholtz, 2003). TGFb, which

has been involved in smoothmuscle cellmaturation, is a potential

driver of the expression of aSMA in tumor pericytes (Song et al.,

2005).

Tumor pericytes as therapeutic targets. The tumor stroma

influences the outcome of therapeutic approaches and may

hence provide targets for therapeutical intervention (Pietras

and Ostman, 2010). Recent analysis of the causes of resistance

to anti-VEGF therapy points to an important role of tumor-infil-

trating leukocytes in providing other angiogenic signals (Casa-

novas, 2011; Shojaei and Ferrara, 2008). Pericytes have also

been proposed to protect the endothelium in situations of

VEGF-A inhibition. VEGF-A ablation in tumors led to selective

elimination of tumor blood vessels that lacked pericyte coverage

(Benjamin et al., 1999). Double targeting of both endothelial cells

and pericytes has been suggested to have better antitumoral

effect than targeting of any of the cell types alone (Bergers

et al., 2003; Erber et al., 2004). However, the pharmacological

approaches used involved tyrosine kinase inhibitors, which are

known for their promiscuity regarding molecular targets (Fabian

et al., 2005). Thus, the enhanced antitumor effect observed may

reflect inhibition of other signaling pathways than those in-

tended. The approach for double targeting of endothelial cells

and pericytes used in preclinical studies has also been tested
Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc. 205
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in an early clinical trial with negative results (Hainsworth et al.,

2007). Also, other work in preclinical models has failed to demon-

strate increased effects of endothelial targeting in the absence of

pericytes (Nisancioglu et al., 2010). Depletion of pericytes

instead led to an unexpected increase in tumor growth in some

models (Nisancioglu et al., 2010; Sennino et al., 2007). A correla-

tion between poor pericyte coverage of tumor vasculature with

increased metastatic events has also been reported (discussed

below). In summary, the question whether targeting tumor peri-

cytes is of therapeutic advantage is still unanswered.

Pericytes and tumor vessel normalization. In contrast to the

healthy tissue vasculature, tumor vessels are highly abnormal

structurally and functionally (Jain, 2005). Apart from aberrant

pericyte coverage, tumor vessels are characterized by irregular

shape and a disorganized architecture with highly dysfunctional

and leaky endothelial cell layers. All these changes harm tumor

perfusion, resulting in poor drug access to the tumor and

impaired oxygen delivery. Together, the aberrant features of

tumor blood vessels have been recently considered a hallmark

of cancer (De Bock et al., 2011). The abnormal features are the

consequence of persistent production of proangiogenic factors,

notably VEGF-A.

Pharmacological blockade of VEGF-A signaling reverts—

albeit transiently (Winkler et al., 2004)—the aberrant features of

tumor vasculature, leading to vessel normalization. Tumor

vessels thereby resemble the vessels of normal tissues, resulting

in improved oxygen, drug, and nutrient delivery to the tumor

(Jain, 2005). Of importance for this discussion is that the vessel

normalization correlates with increased pericyte coverage and

attachment to the vascular wall.

Tumor vessel normalization is desirable because it improves

drug and chemotherapy delivery to the tumor. Because normal-

ization appears to be a transient result of antiangiogenic therapy

(Winkler et al., 2004), it might be advantageous to increase its

duration, and hence we need to learn more about its mecha-

nisms. Does tumor vasculature normalize as a consequence of

improved pericyte abundance (and/or function) or does normal-

ization cause more efficient pericyte recruitment as a bystander

effect? A recent study provides some evidence that strengthens

the case of pericytes as regulators of vascular normalization.

Experimental pancreatic cancer grown in mice deficient for the

pericyte marker RGS5 showed increased pericyte maturation

and vascular normalization, which correlated with diminished

vessel leakiness and hypoxia (Hamzah et al., 2008).

Emerging Concepts in Tumor Pericyte

Research—Transendothelial Migration

of Tumor Cells and Leukocytes

The tumor microenvironment has a major role in modulating the

metastatic capacity of most cancers. Most of our knowledge on

stroma-promoting metastatic events comes from studies on

cancer-associated fibroblasts or infiltrating immune cells (Joyce

and Pollard, 2009; Pietras and Ostman, 2010). However, peri-

cytes may be involved as well (Gerhardt and Semb, 2008;

Raza et al., 2010). Evidence for the contribution of pericytes to

increased metastatic events comes from an experimental model

of pancreatic cancer (Xian et al., 2006) as well as from human

colorectal cancer patients (Yonenaga et al., 2005). An associa-

tion betweenmetastatic events and reduced expression ofmural

cell markers has been demonstrated across a wide range of
206 Developmental Cell 21, August 16, 2011 ª2011 Elsevier Inc.
human solid tumors, suggesting that low pericyte coverage

may trigger metastasis and correlate to poorer prognosis (Ram-

aswamy et al., 2003). Beyond these correlations, the question

about cellular and molecular mechanisms remains. It is still

unclear whether pericytes actively promotemetastasis or consti-

tute a physical barrier to vascular dissemination and/or extrava-

sation of tumor cells. The former has no plausible hypothesis as

of yet. The latter could be explained because pericyte deficiency

increases interstitial fluid pressure, which might promote a

passive flow of detached tumor cells into the circulation through

leaky endothelial cell layers. Moreover, pericytes could play

a role in limiting the colonization of metastatic tumor cells at

the site of extravasation. Metastasizing melanoma or lung carci-

noma cells gain access to the brain and then remain in perivas-

cular locations where they undergo apoptosis or grow into an es-

tablished metastasis (Kienast et al., 2010). Pericyte dysfunction

may hence alter the perivascular microenvironment facilitating

the colonization and growth of metastatic cells in the target

organ.

The transmigration of inflammatory cells to the site of inflam-

mation entails a complex cascade of events that involve the

inflammatory cells, cytokines, endothelial cells, BM, and peri-

cytes. This process is comprehensively reviewed elsewhere

(Nourshargh et al., 2010; Soehnlein and Lindbom, 2010). In brief,

there are several physical barriers that the inflammatory cells

must overcome in order to reach into the tumor or inflammatory

site, including the endothelium, the BM, and the pericytes. By

using in vivo imaging, recent studies suggest that inflammatory

cells migrate across the vessel wall at permissive sites devoid

of pericyte coverage (Voisin et al., 2010;Wang et al., 2006). Other

reports implicate pericytes in the regulation of T cell exit from the

thymus (Zachariah and Cyster, 2010) and in the regulation of

leukocyte adhesion molecules in endothelial cells (Daneman

et al., 2010) (discussed above). Recent findings suggest a role

for tumor pericytes in regulating the transmigration of inflamma-

tory cells. Tumors developed in mice deficient for the pericyte-

specific gene RGS5 showed increased infiltration of CD8+/

CD4+ T cells after adoptive transfer. These data suggest that

pericytes may modulate the vasculature to adapt to different

conditions, either facilitating or inhibiting the trafficking of im-

mune cells (Hamzah et al., 2008). It was also recently demon-

strated that PDGFRb activation leads to upregulated expression

of a battery of immune response genes in pericytes (Olson and

Soriano, 2011). Thus, immune modulation and transmigration

of inflammatory cells may be added to the growing list of pericyte

mediated vascular functions of relevance for the design of anti-

angiogenic and vascular targeting strategies in cancer and other

diseases (Figure 7).

Tumors Arising from Pericytes

Hemangiopericytomas (HPCs) were first described as tumors

arising from the pericytes described by Zimmermann (Stout

and Murray, 1942). HPCs primarily affect adults of 20–70 years

of age (Enzinger and Smith, 1976). The most commonly affected

anatomic sites for HPCs are lower extremities, retroperitoneum,

and head and neck, notably in the supratentorial meninges.

HPCs bear a close histomorphological similarity to solitary

fibrous tumors, which makes them often indistinguishable

(Gengler and Guillou, 2006; Park and Araujo, 2009). In fact,

in the WHO classification, the concept of HPC as a vascular,
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pericyte-derived tumor was abandoned in favor of a fibroblastic

cell of origin (Fletcher, 2006).

Diagnosis of HPC is initially based on typical architectural

vascular pattern associated with a population of mesenchymal

cells that display no discernible differentiation under light micro-

scope (Koch et al., 2008). The vessels form a vascular network

with branching vessels of various diameters, with the smaller

vessels partly compressed by the surrounding cellular prolifera-

tion. On the immunohistochemistry level, HPCs express aSMA

and CD34, being negative for CD31, GFAP, and Mib-1. Under

these criteria, HPC is classified as WHO grade II (Louis et al.,

2007). Management of HPC is preferentially by surgical resec-

tion. It is notoriously difficult to predict the prognosis and clinical

behavior of HPC (Gengler and Guillou, 2006), perhaps because

at the pathology level it is difficult to define malignant character-

istics. Different studies report disparate incidence of metastasis

(10%–60%). Being a highly vascularized tumor, HPC has then

become a target for antiangiogenic therapies. Combined

therapy with Bevacizumab and temozolomide showed prom-

ising results (Park et al., 2011). Sorafenib and Sunitinib have

also been employed with relative success (Mulamalla et al.,

2008).

In summary, HPC is a rare mesenchymal tumor with unclear

cellular origin, presumably pericytes. Diagnosis, management,

and metastatic potential are ill defined, and despite some recent

therapeutic improvements by employing antiangiogenic drugs

(Park et al., 2010), a better understanding of the molecular path-

ogenesis of this malignancy is much needed.

Pericytes in Diabetic Retinopathy

Diabetic retinopathy is one of the most common complications

of diabetes, with one-third of adult diabetic patients affected,

and constitutes a leading cause of blindness (Cheung et al.,

2010). Together with diabetic nephropathy it is considered the

prototypical microvascular complication of diabetes. This view,

however, has been recently widened to include the entire array

of changes that occur during the disease (Gardner et al.,

2011). The microvascular changes manifest as pericyte death

and BM thickening with altered blood flow in the retina capil-

laries. These changes lead to capillary leakage—macular

edema—and vessel occlusion and constitute the nonprolifera-

tive phase of diabetic retinopathy. Proliferative diabetic retinop-

athy develops secondary to capillary occlusion, which upregu-

lates growth factors, notably VEGF-A. Proliferative retinopathy

is defined by the growth of abnormal new vessels from the retina

to the posterior surface of the vitreous or the iris.

It is currently accepted that diabetic retinopathy manifests

first by vascular cell apoptosis, including pericyte detachment,

thickening of the BM, vascular dysfunction, and permeability,

all traits of the nonproliferative phase of the disease. The pro-

tease technique (Bresnick et al., 1977) used for the study of

the retinal vasculature in fixed specimens consistently reveals

the presence of pericyte ‘‘ghosts,’’ or pockets in the BM

that appear to have harbored a pericyte (Kern et al., 2000).

Other studies noted the absence of pericytes in some capil-

laries with intact endothelial cells and that vessels with mi-

croaneurysms tended to have no pericytes (Barber et al.,

2011).

The cause of pericyte apoptosis in diabetic retinopathy is

poorly understood. Some possible mechanisms link pericyte
apoptosis with increased oxidative stress and NF-kB activation

(Romeo et al., 2002). Disruption of the PDGF-B/PDGFRb

signaling axis has also been suggested to play a role in pericyte

apoptosis. Endothelial cell ablation or reduced levels of PDGF-B

have been shown to recapitulate the pericyte loss and aneu-

rysms and some of the vascular changes that characterize dia-

betic retinopathy (Enge et al., 2002; Hammes et al., 2002). Inter-

estingly, a recent study identified overexpression of PKCd in

pericytes following hyperglycemia. Activation of PKCd phos-

phorylates p38a MAPK, resulting in increased expression of

the tyrosine protein phosphatase SHP-1. This signaling cascade

leads to PDGFRb dephosphorylation and pericyte apoptosis

(Geraldes et al., 2009). It is unclear how hyperglycemia induces

PKCd overexpression.

Another of the key attributes of the nonproliferative phase of

diabetic retinopathy is the loss of blood-retinal barrier integrity

leading to increased permeability and macular edema, which in

turn precedes vascular proliferation (Ockrim and Yorston,

2010). Several cellular andmolecular mediators have been impli-

cated in the onset of macular edema, such as VEGF-A,

advanced glycation end products, or TGFb (Ehrlich et al.,

2010). Given the similarities between the blood-brain barrier

and the blood-retinal barrier, macular edema could be caused

by pericyte dropout leading to increased endothelial transcyto-

sis. Indeed, vesicular transport-related genes such as caveo-

lin-1 and PV-1 were demonstrated to be consistently upregu-

lated in the retinas of diabetic rats, whereas genes encoding

for tight junctions such as occudin and claudin-5 showed only

marginal downregulation in the initial diabetes period (Klaassen

et al., 2009).

Concluding Remarks
An iterated concern in pericyte biology is the definition of the cell

type. The problems entailed with pericyte identification all go

back to what we mean with the term pericyte. The classical

description—and definition—is that of a quiescent pericyte in

a stable blood vessel of a normal adult organ. Yet pericyte

precursors, or the pericytes of immature and remodeling vessels

in the embryo and in pathological conditions, are also functional,

as demonstrated by the effects of their alteration or absence in

various experimental and pathological situations. Thus, the peri-

cyte is a ‘‘moving target,’’ the description and definition of which

will inevitably change and become more refined as research

moves forward. Still, the current literature is laden with reports

in which pericyte identification by morphology and marker

expression is clearly substandard, work that should therefore

be taken with a large grain of salt. Nevertheless, pericyte re-

search is currently undergoing an explosion of activity in diverse

areas of developmental and vascular biology and pathology.

Emerging concepts include the physiological role of pericytes

in the regulation of vascular permeability to solutes, molecules,

and cells, proinflammatory responses, and vascular stabilization

and normalization in tumors. The seemingly obligatory presence

of mesenchymal and other stem cells in vascular niches pose

questions about the identity of the stem cells–are some of

them pericytes, or are perciytes functional niche cells, or both?

Clearly, research on pericytes has accelerated in the past few

years and our perspectives and knowledge about these cells

will rapidly change over the years to come.
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