17 research outputs found

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Real-World Performance of a Comprehensive Genomic Profiling Test Optimized for Small Tumor Samples

    Get PDF
    PURPOSE: Tissue-based comprehensive genomic profiling (CGP) is increasingly used for treatment selection in patients with advanced cancer; however, tissue availability may limit widespread implementation. Here, we established real-world CGP tissue availability and assessed CGP performance on consecutively received samples. MATERIALS AND METHODS: We conducted a post hoc, nonprespecified analysis of 32,048 consecutive tumor tissue samples received for StrataNGS, a multiplex polymerase chain reaction (PCR)-based comprehensive genomic profiling (PCR-CGP) test, as part of an ongoing observational trial (NCT03061305). Sample characteristics and PCR-CGP performance were assessed across all tested samples, including exception samples not meeting minimum input quality control (QC) requirements (\u3c 20% tumor content [TC], \u3c 2 mm tumor surface area [TSA], DNA or RNA yield \u3c 1 ng/µL, or specimen age \u3e 5 years). Tests reporting ≥ 1 prioritized alteration or meeting TC and sequencing QC were considered successful. For prostate carcinoma and lung adenocarcinoma, tests reporting ≥ 1 actionable or informative alteration or meeting TC and sequencing QC were considered actionable. RESULTS: Among 31,165 (97.2%) samples where PCR-CGP was attempted, 10.7% had \u3c 20% TC and 59.2% were small (\u3c 25 mm tumor surface area). Of 31,101 samples evaluable for input requirements, 8,089 (26.0%) were exceptions not meeting requirements. However, 94.2% of the 31,101 tested samples were successfully reported, including 80.5% of exception samples. Positive predictive value of PCR-CGP for amplification in exceptions and/or sequencing QC-failure breast cancer samples was 96.7%. Importantly, 84.0% of tested prostate carcinomas and 87.9% of lung adenocarcinomas yielded results informing treatment selection. CONCLUSION: Most real-world tissue samples from patients with advanced cancer desiring CGP are limited, requiring optimized CGP approaches to produce meaningful results. An optimized PCR-CGP test, coupled with an inclusive exception testing policy, delivered reportable results for \u3e 94% of samples, potentially expanding the proportion of CGP-testable patients and impact of biomarker-guided therapies

    Real-world performance of a comprehensive genomic profiling test optimized for small tumor samples

    No full text
    Purpose: Tissue-based comprehensive genomic profiling (CGP) is increasingly used for treatment selection in patients with advanced cancer; however, tissue availability may limit widespread implementation. Here, we established real-world CGP tissue availability and assessed CGP performance on consecutively received samples. Materials and methods: We conducted a post hoc, nonprespecified analysis of 32,048 consecutive tumor tissue samples received for StrataNGS, a multiplex polymerase chain reaction (PCR)-based comprehensive genomic profiling (PCR-CGP) test, as part of an ongoing observational trial (NCT03061305). Sample characteristics and PCR-CGP performance were assessed across all tested samples, including exception samples not meeting minimum input quality control (QC) requirements (\u3c 20% tumor content [TC], \u3c 2 mm2 tumor surface area [TSA], DNA or RNA yield \u3c 1 ng/µL, or specimen age \u3e 5 years). Tests reporting ≥ 1 prioritized alteration or meeting TC and sequencing QC were considered successful. For prostate carcinoma and lung adenocarcinoma, tests reporting ≥ 1 actionable or informative alteration or meeting TC and sequencing QC were considered actionable. Results: Among 31,165 (97.2%) samples where PCR-CGP was attempted, 10.7% had \u3c 20% TC and 59.2% were small (\u3c 25 mm2 tumor surface area). Of 31,101 samples evaluable for input requirements, 8,089 (26.0%) were exceptions not meeting requirements. However, 94.2% of the 31,101 tested samples were successfully reported, including 80.5% of exception samples. Positive predictive value of PCR-CGP for ERBB2 amplification in exceptions and/or sequencing QC-failure breast cancer samples was 96.7%. Importantly, 84.0% of tested prostate carcinomas and 87.9% of lung adenocarcinomas yielded results informing treatment selection. Conclusion: Most real-world tissue samples from patients with advanced cancer desiring CGP are limited, requiring optimized CGP approaches to produce meaningful results. An optimized PCR-CGP test, coupled with an inclusive exception testing policy, delivered reportable results for \u3e 94% of samples, potentially expanding the proportion of CGP-testable patients and impact of biomarker-guided therapies

    Development and validation of an integrative pan-solid tumor predictor of PD-1/PD-L1 blockade benefit

    No full text
    Background: Anti-PD-1 and PD-L1 (collectively PD-[L]1) therapies are approved for many advanced solid tumors. Biomarkers beyond PD-L1 immunohistochemistry, microsatellite instability, and tumor mutation burden (TMB) may improve benefit prediction. Methods: Using treatment data and genomic and transcriptomic tumor tissue profiling from an observational trial ( NCT03061305 ), we developed Immunotherapy Response Score (IRS), a pan-tumor predictive model of PD-(L)1 benefit. IRS real-world progression free survival (rwPFS) and overall survival (OS) prediction was validated in an independent cohort of trial patients. Results: Here, by Cox modeling, we develop IRS-which combines TMB with CD274, PDCD1, ADAM12 and TOP2A quantitative expression-to predict pembrolizumab rwPFS (648 patients; 26 tumor types; IRS-High or -Low groups). In the 248 patient validation cohort (248 patients; 24 tumor types; non-pembrolizumab PD-[L]1 monotherapy treatment), median rwPFS and OS are significantly longer in IRS-High vs. IRS-Low patients (rwPFS adjusted hazard ratio [aHR] 0.52, p = 0.003; OS aHR 0.49, p = 0.005); TMB alone does not significantly predict PD-(L)1 rwPFS nor OS. In 146 patients treated with systemic therapy prior to pembrolizumab monotherapy, pembrolizumab rwPFS is only significantly longer than immediately preceding therapy rwPFS in IRS-High patients (interaction test p = 0.001). In propensity matched lung cancer patients treated with first-line pembrolizumab monotherapy or pembrolizumab+chemotherapy, monotherapy rwPFS is significantly shorter in IRS-Low patients, but is not significantly different in IRS-High patients. Across 24,463 molecularly-evaluable trial patients, 7.6% of patients outside of monotherapy PD-(L)1 approved tumor types are IRS-High/TMB-Low. Conclusions: The validated, predictive, pan-tumor IRS model can expand PD-(L)1 monotherapy benefit outside currently approved indications
    corecore