659 research outputs found
Combining Penthiopyrad with Azoxystrobin is an Effective Alternative to Control Seedling Damping-off Caused by Rhizoctonia solani on Sugar Beet
The soil-borne fungus Rhizoctonia solani causes damping-off on sugar beet seedlings. Growers rely on fungicides to protect sugar beet in fields affected by R. solani. Quinone outside inhibitor (QoI) fungicides, such as azoxystrobin, have been applied as in-furrow and foliar sprays to manage R. solani, but repeated use of QoI fungicides pose risks in fungicide resistance. Penthiopyrad is a novel fungicide with the succinate dehydrogenase inhibitor (SDHI) mode of action. The objectives of this study were to compare the efficacy of penthiopyrad used as a sole seed treatment versus azoxystrobin as an in-furrow or a post-planting application for controlling R. solani; to determine if a penthiopyrad seed treatment combined with azoxystrobin as a post-planting application can improve control of R. solani over sole penthiopyrad seed treatment, azoxystrobin in-furrow or post-planting spray application. Seedling survival rate and area under disease progress curve (AUDPC) for seedling loss rate were used to measure the efficacy of each treatment. A sole penthiopyrad seed treatment at 14 g a.i. kg-1 of seeds, and penthiopyrad seed treatments at 7 and 14 g a.i. kg-1 of seeds combined with one azoxystrobin in-furrow application 14 days after planting resulted in similar seedling survival rate and AUDPC as achieved with the standard azoxystrobin in-furrow application. However, post-planting foliar spray of azoxystrobin alone failed to control seedling damping-off. Our research suggests that penthiopyrad can be used as a seed treatment to provide early protection to vulnerable seedlings while azoxystrobin can be used as a post-planting application to protect the ensuing adult plantsPeer reviewedFinal Accepted Versio
One-Loop QCD Corrections to the Thermal Wilson Line Model
We calculate the time independent four-point function in high temperature (T)
QCD and obtain the leading momentum dependent terms. Furthermore, we relate
these derivative interactions to derivative terms in a recently proposed finite
T effective action based on the SU(3) Wilson Line and its trace, the Polyakov
Loop. By this procedure we thus obtain a perturbative matching at finite T
between QCD and the effective model. In particular, we calculate the leading
perturbative QCD-correction to the kinetic term for the Polyakov Loop.Comment: Minor changes, one reference adde
Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions
We perform a study of matrix elements relevant for the Delta I=1/2 rule and
the direct CP-violation parameter epsilon-prime from first principles by
computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions,
and employ the chiral perturbation theory method for studying K to 2 Pi decays.
Having obtained a reasonable statistical accuracy, we observe an enhancement of
the Delta I=1/2 amplitude, consistent with experiment within our large
systematic errors. Finite volume and quenching effects have been studied and
were found small compared to noise. The estimates of epsilon-prime are hindered
by large uncertainties associated with operator matching. In this paper we
explain the simulation method, present the results and address the systematic
uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev.
D. Minor errors are corrected, some wording and notation change
Methyl jasmonate effects on sugarbeet root responses to postharvest dehydration
Background Sugarbeet (Beta vulgaris L.) roots are stored under conditions that cause roots to dehydrate, which increases postharvest losses. Although exogenous jasmonate applications can reduce drought stress in intact plants, their ability to alleviate the effects of dehydration in postharvest sugarbeet roots or other stored plant products is unknown. Research was conducted to determine whether jasmonate treatment could mitigate physiological responses to dehydration in postharvest sugarbeet roots. Methods Freshly harvested sugarbeet roots were treated with 10 ÂľM methyl jasmonate (MeJA) or water and stored under dehydrating and non-dehydrating storage conditions. Changes in fresh weight, respiration rate, wound healing, leaf regrowth, and proline metabolism of treated roots were investigated throughout eight weeks in storage. Results Dehydrating storage conditions increased root weight loss, respiration rate, and proline accumulation and prevented leaf regrowth from the root crown. Under dehydrating conditions, MeJA treatment reduced root respiration rate, but only in severely dehydrated roots. MeJA treatment also hastened wound-healing, but only in the late stages of barrier formation. MeJA treatment did not impact root weight loss or proline accumulation under dehydrating conditions or leaf regrowth under non-dehydrating conditions. Both dehydration and MeJA treatment affected expression of genes involved in proline metabolism. In dehydrated roots, proline dehydrogenase expression declined 340-fold, suggesting that dehydration-induced proline accumulation was governed by reducing proline degradation. MeJA treatment altered proline biosynthetic and catabolic gene expression, with greatest effect in non-dehydrated roots. Overall, MeJA treatment alleviated physiological manifestations of dehydration stress in stored roots, although the beneficial effects were small. Postharvest jasmonate applications, therefore, are unlikely to significantly reduce dehydration-related storage losses in sugarbeet roots
Connection between Chiral Symmetry Restoration and Deconfinement
We propose a simple explanation for the connection between chiral symmetry
restoration and deconfinement in QCD at high temperature. In the Higgs
description of the QCD vacuum both spontaneous chiral symmetry breaking and
effective gluon masses are generated by the condensate of a color octet
quark-antiquark pair. The transition to the high temperature state proceeds by
the melting of this condensate. Quarks and gluons become (approximately)
massless at the same critical temperature. For instanton-dominated effective
multiquark interactions and three light quarks with equal mass we find a first
order phase transition at a critical temperature around 170 MeV.Comment: New section on vortices,33 pages,LaTe
Recommended from our members
Unbiased, optimal, and in-betweens: the trade-off in discrete finite impulse response filtering
In this survey, the authors examine the trade-off between the unbiased, optimal, and in-between solutions in finite impulse response (FIR) filtering. Specifically, they refer to linear discrete real-time invariant state-space models with zero mean noise sources having arbitrary covariances (not obligatorily delta shaped) and distributions (not obligatorily Gaussian). They systematically analyse the following batch filtering algorithms: unbiased FIR (UFIR) subject to the unbiasedness condition, optimal FIR (OFIR) which minimises the mean square error (MSE), OFIR with embedded unbiasedness (EU) which minimises the MSE subject to the unbiasedness constraint, and optimal UFIR (OUFIR) which minimises the MSE in the UFIR estimate. Based on extensive investigations of the polynomial and harmonic models, the authors show that the OFIR-EU and OUFIR filters have higher immunity against errors in the noise statistics and better robustness against temporary model uncertainties than the OFIR and Kalman filters
Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit
Quenched QCD simulations on three volumes, , and
and three couplings, , 5.85 and 6.0 using domain
wall fermions provide a consistent picture of quenched QCD. We demonstrate that
the small induced effects of chiral symmetry breaking inherent in this
formulation can be described by a residual mass (\mres) whose size decreases
as the separation between the domain walls () is increased. However, at
stronger couplings much larger values of are required to achieve a given
physical value of \mres. For and , we find
\mres/m_s=0.033(3), while for , and ,
\mres/m_s=0.074(5), where is the strange quark mass. These values are
significantly smaller than those obtained from a more naive determination in
our earlier studies. Important effects of topological near zero modes which
should afflict an accurate quenched calculation are easily visible in both the
chiral condensate and the pion propagator. These effects can be controlled by
working at an appropriately large volume. A non-linear behavior of in
the limit of small quark mass suggests the presence of additional infrared
subtlety in the quenched approximation. Good scaling is seen both in masses and
in over our entire range, with inverse lattice spacing varying between
1 and 2 GeV.Comment: 91 pages, 34 figure
Topological Susceptibility on Dynamical Staggered Fermion Configurations
The topological susceptibility is one of the few physical quantities that
directly measure the properties of the QCD vacuum. Chiral perturbation theory
predicts that in the small quark mass limit the topological susceptibility
depends quadratically on the pion mass, approaching zero in the chiral limit.
Lattice calculations have difficulty reproducing this behavior. In this paper
we study the topological susceptibility on dynamical staggered fermion
configurations. Our results indicate that the lattice spacing has to be small,
around a~0.1fm for thin link staggered fermion actions to show the expected
chiral behavior. Our preliminary result indicates that fat link fermions, on
the other hand, reproduce the theoretical expectations even on lattices with
a~0.17fm. We argue that this is due to the improved flavor symmetry of fat link
fermionic actions.Comment: 16 pages, 4 figure
Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks
We present results for , , , and their ratios in
the presence of two flavors of light sea quarks (). We use Wilson light
valence quarks and Wilson and static heavy valence quarks; the sea quarks are
simulated with staggered fermions. Additional quenched simulations with
nonperturbatively improved clover fermions allow us to improve our control of
the continuum extrapolation. For our central values the masses of the sea
quarks are not extrapolated to the physical , masses; that is, the
central values are "partially quenched." A calculation using "fat-link clover"
valence fermions is also discussed but is not included in our final results. We
find, for example,
MeV, , MeV, and , where in each case the first error is
statistical and the remaining three are systematic: the error within the
partially quenched approximation, the error due to the missing strange
sea quark and to partial quenching, and an estimate of the effects of chiral
logarithms at small quark mass. The last error, though quite significant in
decay constant ratios, appears to be smaller than has been recently suggested
by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other
lattice computations to date, the lattice quark masses are not very light
and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral
logarithms at small quark mass; central values are unchanged but one more
systematic error has been added. Sections III E and V D are completely new;
some changes for clarity have also been made elsewhere. 82 pages; 32 figure
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
- âŚ