1,901 research outputs found

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Get PDF
    Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyr- rolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibi- otic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravi- metric analysis indicated that the PVP–drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO–drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications.QUST-CAS-SPR-14\15-

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2 . The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    Experimental and numerical investigations of Underground Coal Gasification (UCG) using half-teardrop shape cavity

    Get PDF
    In this work, the process of Underground Coal Gasification (UCG) was studied experimentally and numerically. The typical cavity of UCG was a half-teardrop shape. Thecoal samples were collected from Mae Moh coal mine, Thailand. The coal type is mainly lignite. To generate the gasification process, the coal sample was heated in the half-teardrop cavity by injecting partial oxidant, which is air, according to the Equivalent Ratio (ER) of 0.1, 0.2, 0.3, 0.5, and 0.7. The properties of the product gas were measured using a syngas analyser. CFD technique, ANSYS (Fluent), was used to simulate flow characteristics and gasification process in the cavity. The experimental results show that the low heating value (LHV) of syngas peaks at 0.92 MJ/m3 when ER = 0.1, and LHV decreases monotonically as ER increases. The CFD results show that the area of high temperature in the UCG cavity is larger when the ER was great

    MEDICAL STUDENTS' PERCEPTIONS OF COMPLEMENTARY AND ALTERNATIVE MEDICINE THERAPIES: A PRE- AND POST-EXPOSURE SURVEY IN MAJMAAH UNIVERSITY, SAUDI ARABIA

    Get PDF
    Background: Evidently, Complementary and Alternative Medicine (CAM) is increasingly a recognized medical practice that efficiently uses multiple treatment therapies and techniques in promoting the health and wellbeing of people as well as preventing and managing a variety of human disorders. Research in CAM, which courses exposure to diverse healthcare professionals, is important from many perspectives including improvement in teaching skills of faculty, enhancing capacity building, and innovative curriculum development. This pre- and post-design crosssectional study aimed to assess perceptions, training needs, personal usage, use in office practice, and knowledge of two batches of medical students toward CAM therapies in Majmaah University, Saudi Arabia. Materials and Methods: The second year medical students of the first (year 2012-13) and second (year 2013-2014) batch [n=26 & 39, respectively] were selected for this study. A reliable 16-item self-administered questionnaire was distributed among all students for answering before and after the 48-hour specific 19 CAM therapies course, in terms of CAM therapies are clearly conventional or alternative, training needs, effectiveness, personal use, use in practice, management of two clinical cases by CAM or conventional therapies, and views about which evidence based approach strongly support individual CAM modalities. Results: Medical students' knowledge and perceptions of CAM therapies significantly improved across some sub-items of CAM questionnaire with a positive trend in the rest of its items including their views about CAM therapies, need for further training, personal use of therapies and advising patients regarding CAM practices strongly supported by randomized clinical controlled trials and published case studies. Conclusion: CAM course tends to have positive impact on the knowledge and perceptions of medical students, in addition to need for further training, and personal use and use of CAM therapies in practice in line with strong evidence-based data regarding therapeutic efficacy. The preliminary results of this study call for further research in specific CAM modalities with a larger sample in academic settings across the nation

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    From tackles to trauma: investigating the influence of the FIFA World Cup 2022 on public maxillofacial department in Qatar - an observational study.

    Get PDF
    The Federation Internationale de Football Association (FIFA) World Cup (FIFA-WC) is considered the pinnacle of international sporting events, attracting a diverse array of attendees from across the globe1. Hosting such an event presents diverse challenges for the organizing country, which are further amplified by public health threats1. The 22nd FIFA-WC, held in Qatar from 20 November to 18 December 2022, distinguished itself in several unprecedented dimensions. It marked the first instance of a FIFA-WC being conducted amidst the throes of a global pandemic, specifically the COVID-19 crisis1,2. Moreover, Qatar’s demographic and geographic attributes further accentuated its unique position as the smallest nation, both in terms of population and territory, to host such a monumental event1,2. Notably, the event was devoid of the previously mandated COVID-19 restrictions, as they were lifted in September 2022, presenting an unparalleled scenario for the healthcare sector
    corecore