137 research outputs found

    Antiproliferative Withanolides from Datura wrightii

    Get PDF
    A new withanolide, named withawrightolide (1), and four known withanolides (2−5) were isolated from the aerial parts of Datura wrightii. The structure of compound 1 was elucidated through 2D NMR and other spectroscopic techniques. In addition, the structure of withametelin L (2) was confirmed by X-ray crystallographic analysis. Using MTS viability assays, withanolides 1−5 showed antiproliferative activities against human glioblastoma (U251 and U87), head and neck squamous cell carcinoma (MDA-1986), and normal fetal lung fibroblast (MRC-5) cells with IC50 values in the range between 0.56 and 5.6 μM

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Phylogenetic Analysis Suggests That Habitat Filtering Is Structuring Marine Bacterial Communities Across the Globe

    Get PDF
    The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes

    Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling

    Get PDF
    Hypoxia is a common micro-environmental stress which is experienced by cells during a range of physiologic and pathophysiologic processes. The identification of the hypoxia-inducible factor (HIF) as the master regulator of the transcriptional response to hypoxia transformed our understanding of the mechanism underpinning the hypoxic response at the molecular level and identified HIF as a potentially important new therapeutic target. It has recently become clear that multiple levels of regulatory control exert influence on the HIF pathway giving the response a complex and dynamic activity profile. These include positive and negative feedback loops within the HIF pathway as well as multiple levels of crosstalk with other signaling pathways. The emerging model reflects a multi-level regulatory network that affects multiple aspects of the physiologic response to hypoxia including proliferation, apoptosis, and differentiation. Understanding the interplay between the molecular mechanisms involved in the dynamic regulation of the HIF pathway at a systems level is critically important in defining new appropriate therapeutic targets for human diseases including ischemia, cancer, and chronic inflammation. Here, we review our current knowledge of the regulatory circuits which exert influence over the HIF response and give examples of in silico model-based predictions of the dynamic behaviour of this system

    CCL5 regulation of mucosal chlamydial immunity and infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following genital chlamydial infection, an early T helper type 1 (Th1)-associated immune response precedes the activation and recruitment of specific Th1 cells bearing distinct chemokine receptors, subsequently leading to the clearance of <it>Chlamydia</it>. We have shown that CCR5, a receptor for CCL5, is crucial for protective chlamydial immunity. Our laboratory and others have also demonstrated that CCL5 deficiencies found in man and animals can increase the susceptibility and progression of infectious diseases by modulating mucosal immunity. These findings suggest the CCR5-CCL5 axis is necessary for optimal chlamydial immunity. We hypothesized CCL5 is required for protective humoral and cellular immunity against <it>Chlamydia</it>.</p> <p>Results</p> <p>The present study revealed that CCR5 and CCL5 mRNAs are elevated in the spleen, iliac lymph nodes (ILNs), and genital mucosa following <it>Chlamydia muriduram </it>challenge. Antibody (Ab)-mediated inhibition of CCL5 during genital chlamydial infection suppressed humoral and Th1 > Th2 cellular responses by splenic-, ILN-, and genital mucosa-derived lymphocytes. Antigen (Ag)-specific proliferative responses of CD4<sup>+ </sup>T cells from spleen, ILNs, and genital organs also declined after CCL5 inhibition.</p> <p>Conclusion</p> <p>The suppression of these responses correlated with delayed clearance of <it>C. muriduram</it>, which indicate chlamydial immunity is mediated by Th1 immune responses driven in part by CCL5. Taken together with other studies, the data show that CCL5 mediates the temporal recruitment and activation of leukocytes to mitigate chlamydial infection through enhancing adaptive mucosal humoral and cellular immunity.</p

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Get PDF
    BACKGROUND: Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-lepr(db)/lepr(db) (db/db) mouse. METHODS AND FINDINGS: We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was not significantly reversed with rosiglitazone. In particular, we have uncovered a number of rosiglitazone modulated genes and pathways that may play a role in the pathophysiology of the increase in cardiac mortality as seen in several recent meta-analyses. Specifically, the cumulative upregulation of (1) a matrix metalloproteinase gene that has previously been implicated in plaque rupture, (2) potassium channel genes involved in membrane potential maintenance and action potential generation, and (3) sphingolipid and ceramide metabolism-related genes, together give cause for concern over rosiglitazone's safety. Lastly, in vivo imaging studies revealed minimal differences between rosiglitazone-treated and untreated db/db mouse hearts, indicating that rosiglitazone's effects on gene expression in the heart do not immediately turn into detectable gross functional changes. CONCLUSIONS: This study maps the genomic expression patterns in the hearts of the db/db murine model of diabetes and illustrates the impact of rosiglitazone on these patterns. The db/db gene expression signature was markedly different from control, and was not reversed with rosiglitazone. A smaller number of unique and interesting changes in gene expression were noted with rosiglitazone treatment. Further study of these genes and molecular pathways will provide important insights into the cardiac decompensation associated with both diabetes and rosiglitazone treatment

    Understanding the cancer stem cell

    Get PDF
    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity associated with current, non-selective agents

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore