2,024 research outputs found

    The draft genome of the C\u3csub\u3e3\u3c/sub\u3e panicoid grass species \u3ci\u3eDichanthelium oligosanthes\u3c/i\u3e

    Get PDF
    Background: Comparisons between C3 and C4 grasses often utilize C3 species from the subfamilies Ehrhartoideae or Pooideae and C4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C3 panicoid grass Dichanthelium oligosanthes from the independent C4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C3 and C4 grasses. Results: We report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C4 photosynthesis. Conclusions: The phylogenetic location of D. oligosanthes makes it an ideal C3 plant for comparative analysis of C4 evolution in the panicoid grasses. This genome will not only provide a better C3 species for comparisons with C4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology

    Deep Earth carbon reactions through time and space

    Get PDF
    The authors acknowledge partial support from the Sloan Foundation grant G-2016-7157.Reactions involving carbon in the deep Earth have limited manifestation on Earth’s surface, yet they have played a critical role in the evolution of our planet. The metal-silicate partitioning reaction promoted carbon capture during Earth’s accretion and may have sequestered substantial carbon in Earth’s core. The freezing reaction involving iron-carbon liquid could have contributed to the growth of Earth’s inner core and the geodynamo. The redox melting/freezing reaction largely controls the movement of carbon in the modern mantle, and reactions between carbonates and silicates in the deep mantle also promote carbon mobility. The ten-year activity of the Deep Carbon Observatory has made important contributions to our knowledge of how these reactions are involved in the cycling of carbon throughout our planet, both past and present, and helped to identify gaps in our understanding that motivate and give direction to future studies.Publisher PDFPeer reviewe

    Thiocillin contributes to the ecological fitness of Bacillus cereus ATCC 14579 during interspecies interactions with Myxococcus xanthus

    Get PDF
    The soil-dwelling delta-proteobacterium Myxococcus xanthus is a model organism to study predation and competition. M. xanthus preys on a broad range of bacteria mediated by lytic enzymes, exopolysaccharides, Type-IV pilus-based motility, and specialized metabolites. Competition between M. xanthus and prey bacterial strains with various specialized metabolite profiles indicates a range of fitness, suggesting that specialized metabolites contribute to prey survival. To expand our understanding of how specialized metabolites affect predator–prey dynamics, we assessed interspecies interactions between M. xanthus and two strains of Bacillus cereus. While strain ATCC 14579 resisted predation, strain T was found to be highly sensitive to M. xanthus predation. The interaction between B. cereus ATCC 14579 and M. xanthus appears to be competitive, resulting in population loss for both predator and prey. Genome analysis revealed that ATCC 14579 belongs to a clade that possesses the biosynthetic gene cluster for production of thiocillins, whereas B. cereus strain T lacks those genes. Further, purified thiocillin protects B. cereus strains unable to produce this specialized metabolite, strengthening the finding that thiocillin protects against predation and contributes to the ecological fitness of B. cereus ATCC 14579. Lastly, strains that produce thiocillin appear to confer some level of protection to their own antibiotic by encoding an additional copy of the L11 ribosomal protein, a known target for thiopeptides. This work highlights the importance of specialized metabolites affecting predator–prey dynamics in soil microenvironments

    Portfolio Vol. I N 2

    Get PDF
    Wiley, Thomas R. In the Cathedral, Mexico City . Picture. 2. Whitehead, Richard Jr. Izzy was a Lady, After All . Prose. 3. Beckham, Adela. Rain on a March morning . Poem. 6. Beckham, Adela. Heaven . Poem. 6. Deane, Dorothy. Temptation . Poem. 6. Kellogg, Elizabeth. Gruess Dich Gott . Prose. 7. Nadel, Norman. The Duchess . Poem. 8. Dick, Pewilla. The Sligo Fisherman . Prose. 9. Deane, Dorothy. Against the Winter . Poem 12. Flory, Doris Jean. A problem . Poem 12. Travis, Paul Bough. My First View of the Congo Forest . Picture. 13. Bellows, George. Stag at Sharkey\u27s . Picture. 13. B.C.W. Aspiration . Poem. 14. Stewart, John. On Record . Prose 14. Sweitzer, Harry J. Playing Around . Prose. 15. Ellsberg, Edward. Book Parade: Hell on Ice . Prose. 15. B.C.W. End of Winter . Poem. 16. Wiley, Thomas R. End of Winter . Picture. 16. Deeter, Robert. Television, How, Where, and When . Prose. 17. Brush, Jane. Love A La Mode . Poem. 20. Brush, Jane. Radio! . Poem. 20. Brush, Jane. Backward Glance . Poem. 20. Brush, Jane. Homo Paradoxus . Poem. 20. Brush, Jane. The Sardonic Slant . Poem. 20. Brush, Jane. Baths . Prose. 20. Wilson, Gordon. Brushword . Cartoon. 20

    Arabidopsis thaliana PGR7 Encodes a Conserved Chloroplast Protein That Is Necessary for Efficient Photosynthetic Electron Transport

    Get PDF
    A significant fraction of a plant's nuclear genome encodes chloroplast-targeted proteins, many of which are devoted to the assembly and function of the photosynthetic apparatus. Using digital video imaging of chlorophyll fluorescence, we isolated proton gradient regulation 7 (pgr7) as an Arabidopsis thaliana mutant with low nonphotochemical quenching of chlorophyll fluorescence (NPQ). In pgr7, the xanthophyll cycle and the PSBS gene product, previously identified NPQ factors, were still functional, but the efficiency of photosynthetic electron transport was lower than in the wild type. The pgr7 mutant was also smaller in size and had lower chlorophyll content than the wild type in optimal growth conditions. Positional cloning located the pgr7 mutation in the At3g21200 (PGR7) gene, which was predicted to encode a chloroplast protein of unknown function. Chloroplast targeting of PGR7 was confirmed by transient expression of a GFP fusion protein and by stable expression and subcellular localization of an epitope-tagged version of PGR7. Bioinformatic analyses revealed that the PGR7 protein has two domains that are conserved in plants, algae, and bacteria, and the N-terminal domain is predicted to bind a cofactor such as FMN. Thus, we identified PGR7 as a novel, conserved nuclear gene that is necessary for efficient photosynthetic electron transport in chloroplasts of Arabidopsis

    The MOBILIZE Boston Study: Design and methods of a prospective cohort study of novel risk factors for falls in an older population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls are the sixth leading cause of death in elderly people in the U.S. Despite progress in understanding risk factors for falls, many suspected risk factors have not been adequately studied. Putative risk factors for falls such as pain, reductions in cerebral blood flow, somatosensory deficits, and foot disorders are poorly understood, in part because they pose measurement challenges, particularly for large observational studies.</p> <p>Methods</p> <p>The MOBILIZE Boston Study (MBS), an NIA-funded Program Project, is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. Using a door-to-door population-based recruitment, we have enrolled 765 persons aged 70 and older. The baseline assessment was conducted in 2 segments: a 3-hour home interview followed within 4 weeks by a 3-hour clinic examination. Measures included pain, cerebral hemodynamics, and foot disorders as well as established fall risk factors. For the falls follow-up, participants return fall calendar postcards to the research center at the end of each month. Reports of falls are followed-up with a telephone interview to assess circumstances and consequences of each fall. A second assessment is performed 18 months following baseline.</p> <p>Results</p> <p>Of the 2382 who met all eligibility criteria at the door, 1616 (67.8%) agreed to participate and were referred to the research center for further screening. The primary reason for ineligibility was inability to communicate in English. Results from the first 600 participants showed that participants are largely representative of seniors in the Boston area in terms of age, sex, race and Hispanic ethnicity. The average age of study participants was 77.9 years (s.d. 5.5) and nearly two-thirds were women. The study cohort was 78% white and 17% black. Many participants (39%) reported having fallen at least once in the year before baseline.</p> <p>Conclusion</p> <p>Our results demonstrate the feasibility of conducting comprehensive assessments, including rigorous physiologic measurements, in a diverse population of older adults to study non-traditional risk factors for falls and disability. The MBS will provide an important new data resource for examining novel risk factors for falls and mobility problems in the older population.</p

    Five Nuclear Loci Resolve the Polyploid History of Switchgrass (Panicum virgatum L.) and Relatives

    Get PDF
    Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum) and common or Proso millet (P. miliaceum). Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe
    corecore