36 research outputs found

    G-protein αq gene expression plays a role in alcohol tolerance in Drosophila melanogaster

    Get PDF
    Ethanol is a psychoactive substance causing both short- and long-term behavioural changes in humans and animal models. We have used the fruit fly Drosophila melanogaster to investigate the effect of ethanol exposure on the expression of the Gαq protein subunit. Repetitive exposure to ethanol causes a reduction in sensitivity (tolerance) to ethanol, which we have measured as the time for 50% of a set of flies to become sedated after exposure to ethanol (ST50). We demonstrate that the same treatment that induces an increase in ST50 over consecutive days (tolerance) also causes a decrease in Gαq protein subunit expression at both the messenger RNA and protein level. To identify whether there may be a causal relationship between these two outcomes, we have developed strains of flies in which Gαq messenger RNA expression is suppressed in a time- and tissue-specific manner. In these flies, the sensitivity to ethanol and the development of tolerance are altered. This work further supports the value of Drosophila as a model to dissect the molecular mechanisms of the behavioural response to alcohol and identifies G proteins as potentially important regulatory targets for alcohol use disorders

    Prestin is an anion transporter dispensable for mechanical feedback amplification in Drosophila hearing.

    Get PDF
    In mammals, the membrane-based protein Prestin confers unique electromotile properties to cochlear outer hair cells, which contribute to the cochlear amplifier. Like mammals, the ears of insects, such as those of Drosophila melanogaster, mechanically amplify sound stimuli and have also been reported to express Prestin homologs. To determine whether the D. melanogaster Prestin homolog (dpres) is required for auditory amplification, we generated and analyzed dpres mutant flies. We found that dpres is robustly expressed in the fly's antennal ear. However, dpres mutant flies show normal auditory nerve responses, and intact non-linear amplification. Thus we conclude that, in D. melanogaster, auditory amplification is independent of Prestin. This finding resonates with prior phylogenetic analyses, which suggest that the derived motor function of mammalian Prestin replaced, or amended, an ancestral transport function. Indeed, we show that dpres encodes a functional anion transporter. Interestingly, the acquired new motor function in the phylogenetic lineage leading to birds and mammals coincides with loss of the mechanotransducer channel NompC (=TRPN1), which has been shown to be required for auditory amplification in flies. The advent of Prestin (or loss of NompC, respectively) may thus mark an evolutionary transition from a transducer-based to a Prestin-based mechanism of auditory amplification

    Can processes make relationships work? The Triple Helix between structure and action

    Get PDF
    This contribution seeks to explore how complex adaptive theory can be applied at the conceptual level to unpack Triple Helix models. We use two cases to examine this issue – the Finnish Strategic Centres for Science, Technology & Innovation (SHOKs) and the Canadian Business-led Networks of Centres of Excellence (BL-NCE). Both types of centres are organisational structures that aspire to be business-led, with a considerable portion of their activities driven by (industrial) users’ interests and requirements. Reflecting on the centres’ activities along three dimensions – knowledge generation, consensus building and innovation – we contend that conceptualising the Triple Helix from a process perspective will improve the dialogue between stakeholders and shareholders

    Methods to Study Centrosomes and Cilia in Drosophila

    Get PDF
    The deposited item is a book chapter and is part of the series " Methods in Molecular Biology book series ([MIMB, volume 1454]) published by the publisher Humana Press.The deposited book chapter is a pre-print version and hasn't been submitted to peer reviewing.There is no public supplementary material available for this publication.This publication hasn't any creative commons license associated.Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.Fundação Portuguesa para a Ciência e Tecnologia grants: (SFRH/BPD/87479/2012, SFRH/BD/52176/2013); EMBO installation grant; ERC starting grant.info:eu-repo/semantics/publishedVersio

    Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce β-chemokines

    Get PDF
    Traditional antibody-mediated neutralization of HIV-1 infection is thought to result from the binding of antibodies to virions, thus preventing virus entry. However, antibodies that broadly neutralize HIV-1 are rare and are not induced by current vaccines. We report that four human anti-phospholipid monoclonal antibodies (mAbs) (PGN632, P1, IS4, and CL1) inhibit HIV-1 CCR5-tropic (R5) primary isolate infection of peripheral blood mononuclear cells (PBMCs) with 80% inhibitory concentrations of <0.02 to ∼10 µg/ml. Anti-phospholipid mAbs inhibited PBMC HIV-1 infection in vitro by mechanisms involving binding to monocytes and triggering the release of MIP-1α and MIP-1β. The release of these β-chemokines explains both the specificity for R5 HIV-1 and the activity of these mAbs in PBMC cultures containing both primary lymphocytes and monocytes

    HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    Get PDF
    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme

    Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T&gt;G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T&gt;G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects

    Numerical and Experimental Studies on the Crushing Strength of Steel Tubes

    No full text
    corecore