29 research outputs found

    The geometry of the close environment of SV Psc as probed by VLTI/MIDI

    Full text link
    Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims. The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods. Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73- 142{\deg}) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results. The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7 AU and a position angle of 121.8{\deg} NE. The derived orbital period of the binary is 38.1 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure.Comment: 10 pages, 12 figure

    First Results from the Hertzsprung SONG Telescope: Asteroseismology of the G5 Subgiant Star μ Herculis

    Get PDF
    We report the first asteroseismic results obtained with the Hertzsprung Stellar Observations Network Group Telescope from an extensive high-precision radial-velocity observing campaign of the subgiant μ Herculis. The data set was collected during 215 nights in 2014 and 2015. We detected a total of 49 oscillation modes with l values from zero to three, including some l = 1 mixed modes. Based on the rotational splitting observed in l = 1 modes, we determine a rotational period of 52 days and a stellar inclination angle of 63°. The parameters obtained through modeling of the observed oscillation frequencies agree very well with independent observations and imply a stellar mass between 1.11 and 1.15 MM_{\odot} and an age of 7.80.4+0.3{7.8}_{-0.4}^{+0.3} Gyr. Furthermore, the high-quality data allowed us to determine the acoustic depths of the He ii ionization layer and the base of the convection zone

    The GALAH Survey : Non-LTE departure coefficients for large spectroscopic surveys

    Get PDF
    19 pages, 25 figures, 2 tables, arXiv abstract abridged; accepted for publication in A&AMassive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 1313 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 37563756 1D MARCS model atmospheres that spans 3000Teff/K80003000\leq T_{\mathrm{eff}}/\mathrm{K}\leq8000, 0.5logg/cms25.5-0.5\leq\log{g/\mathrm{cm\,s^{-2}}}\leq5.5, and 5[Fe/H]1-5\leq\mathrm{[Fe/H]}\leq1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 5012650126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between 0.7dex-0.7\,\mathrm{dex} and +0.2dex+0.2\,\mathrm{dex} for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe]\mathrm{[A/Fe]} versus [Fe/H]\mathrm{[Fe/H]} plane by up to 0.1dex0.1\,\mathrm{dex}, and it can remove spurious differences between the dwarfs and giants by up to 0.2dex0.2\,\mathrm{dex}. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy.Peer reviewe

    Infrared spectroscopy of asymptotic giant branch stars in the Galactic bulge

    Get PDF
    We have selected a homogeneous sample of asymptotic giant branch (AGB) stars in the Galactic bulge population from the ISOGAL survey. Our target stars cover a wide range of mass-loss rates (∼10−8-10−4 M⊙ yr−1) and differ primarily by their age on the AGB. This homogeneous sample is thus ideally suited to study the dust formation process as a function of age on the AGB. We observed our sample with Spitzer-Infrared Spectrograph, and studied the overall properties of the infrared spectra of these targets. The analysis is complicated by the presence of strong and variable background emission, and the extracted infrared AGB star spectra are affected by interstellar extinction. Several stars in our sample have no detectable dust emission, and we used these ‘naked stars’ to characterize the stellar and molecular contributions to the infrared spectra of our target stars. The resulting dust spectra of our targets do indeed show significant variety in their spectral appearance, pointing to differing dust compositions for the targets. We classify the spectra based on the shape of their 10-μm emission following the scheme by Sloan & Price. We find that the early silicate emission classes associated with oxide dust are generally under-represented in our sample due to extinction effects. We also find a weak 13-μm dust feature in two of our otherwise naked star spectra, suggesting that the carrier of this feature could potentially be the first condensate in the sequence of dust condensation

    4MOST: Project overview and information for the First Call for Proposals

    Get PDF
    We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R=λ/Δλ6500R = \lambda/\Delta\lambda \sim 6500), and 812 fibres transferring light to the high-resolution spectrograph (R20000R \sim 20\,000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations

    Wplyw dodatku maki pszenicy 'orkisz' na wlasciwosci ciasta i jakosc chleba pszennego

    No full text
    Effect replacement of wheat flour with spelt flour on the rheological parameters, baking quality and sensory acceptance was studied. Increasing level of spelt flour in the flour blend concluded in enhanced water absorption capacity and longer dough development time. Addition of spelt flour affected baking and sensory parameters of products. The assessors evaluated as the most acceptable baked goods with 15% addition of spelt flour.Badano wpływ zastąpienia mąki pszennej mąką z orkiszu na właściwości reologiczne ciasta, wartość wypiekową i sensoryczną akceptowalność pieczywa. Stwierdzono że zwiększanie dodatku mąki orkiszowej powoduje wzrost absorpcji wody i wpływa na przedłużenie czasu wyrabiania ciasta. Dodatek mąki orkiszowej wpływa również na wypiek i parametry sensoryczne produktów. Badania sensoryczne wykazały, że uzyskane wypieki miały najlepszą jakość, gdy dodatek mąki orkiszowej wynosił 15%
    corecore