95 research outputs found

    Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study

    Get PDF
    Phosphate and sulfate esters have important roles in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider the impact of the computational model on computed linear free-energy relationships (LFER) and the nature of the transition states (TS) involved. We obtain good qualitative agreement with experimental LFER data when using a pure implicit solvent model and excellent agreement with experimental kinetic isotope effects for all models used. Our calculations suggest that sulfate diester hydrolysis proceeds through loose transition states, with minimal bond formation to the nucleophile and bond cleavage to the leaving group already initiated. Comparison to prior work indicates that these TS are similar in nature to those for the alkaline hydrolysis of neutral arylsulfonate monoesters or charged phosphate diesters and fluorophosphates. Obtaining more detailed insights into the transition states involved assists in understanding the selectivity of enzymes that hydrolyze these reactions

    Progresses in Ab Initio QM/MM Free Energy Simulations of Electrostatic Energies in Proteins: Accelerated QM/MM Studies of pKa, Redox Reactions and Solvation Free Energies

    Get PDF
    Hybrid quantum mechanical / molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for propercomputational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting here different types of QM/MM calculations of electrostatic energies (and related properties), our focus will be on pKa calculations. This reflects the fact that pKa of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to large discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor, as well as a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that by using this approach, we are able to reproduce the relevant sidechain pKas with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA

    Enhancing the Steroid Sulfatase Activity of the Arylsulfatase from Pseudomonas aeruginosa

    Get PDF
    Steroidal sulfate esters play a central role in many physiological processes. They serve as the reservoir for endogenous sex hormones and form a significant fraction of the steroid metabolite pool. The analysis of steroid sulfates is thus essential in fields such as medical science and sports drug testing. Although the direct detection of steroid sulfates can be readily achieved using liquid chromatography-mass spectrometry, many analytical approaches, including gas chromatography-mass spectrometry, are hampered due to the lack of suitable enzymatic or chemical methods for sulfate ester hydrolysis prior to analysis. Enhanced methods of steroid sulfate hydrolysis would expand analytical possibilities for the study of these widely occurring metabolites. The arylsulfatase from Pseudomonas aeruginosa (PaS) is a purified enzyme capable of hydrolysing steroid sulfates. However, this enzyme requires improvement to hydrolytic activity and substrate scope in order to be useful in analytical applications. These improvements were sought by applying semi-rational design to mutate amino acid residues neighbouring the enzyme active site. Mutagenesis was implemented on both single and multiple residue sites. Screening by UPLC-MS was performed to test the steroid sulfate hydrolysis activity of these mutant libraries against testosterone sulfate. This approach revealed the steroid sulfate binding pocket and resulted in three mutants that showed an improvement in catalytic efficiency (Vmax/KM) of more than 150 times that of wild-type PaS. The substrate scope of PaS was expanded and a modest increase in thermostability was observed. Finally, molecular dynamics simulations of enzyme-substrate complexes were used to provide qualitative insight into the structural origin of the observed effects.The authors thank the World Anti-Doping Agency’s Science Research Grants (13A13MM and 16A06MM), the Swedish Research Council (VR, Grant 2015-04928), as well as the Knut and Alice Wallenberg and Wenner-Gren foundations for financial support as well as fellowships to SCLK and AP respectively. All computational work in this paper was supported by computational resources provided by the Swedish National Infrastructure for Computing (SNIC, grants 2016-34-27 and 2017-12-11)

    Allosteric rescue of catalytically impaired ATP phosphoribosyltransferase variants links protein dynamics to active-site electrostatic preorganisation

    Get PDF
    Funding: This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) [Grant BB/M010996/1] via EASTBIO Doctoral Training Partnership studentships to B. J. R. and G. F., by Stiftelsen Olle Engkvist Byggmästare [Grant 190-0335] and the Knut and Alice Wallenberg Foundation [Grants 2018.0140 and 2019.0431] to S.C.L.K., and by the European Union’s Horizon 2020 Research and Innovation Programme via a Marie Sklodowska-Curie fellowship [Grant 890562] to M.C. The simulations were enabled by resources provided by the Swedish National Infrastructure for Supercomputing (SNIC, UPPMAX), partially funded by the Swedish Research Council [Grant 2016-07213].ATP phosphoribosyltransferase catalyses the first step of histidine biosynthesis and is controlled via a complex allosteric mechanism where the regulatory protein HisZ enhances catalysis by the catalytic protein HisGS while mediating allosteric inhibition by histidine. Activation by HisZ was proposed to position HisGS Arg56 to stabilise departure of the pyrophosphate leaving group. Here we report active-site mutants of HisGS with impaired reaction chemistry which can be allosterically restored by HisZ despite the HisZ:HisGS interface lying ~20 Å away from the active site. MD simulations indicate HisZ binding constrains the dynamics of HisGS to favour a preorganised active site where both Arg56 and Arg32 are poised to stabilise leaving-group departure in WT-HisGS. In the Arg56Ala-HisGS mutant, HisZ modulates Arg32 dynamics so that it can partially compensate for the absence of Arg56. These results illustrate how remote protein-protein interactions translate into catalytic resilience by restoring damaged electrostatic preorganisation at the active site.Publisher PDFPeer reviewe

    Enhancing a de novo enzyme activity by computationally-focused ultra-low-throughput screening

    Get PDF
    Directed evolution has revolutionized protein engineering. Still, enzyme optimization by random library screening remains sluggish, in large part due to futile probing of mutations that are catalytically neutral and/or impair stability and folding. FuncLib is a novel approach which uses phylogenetic analysis and Rosetta design to rank enzyme variants with multiple mutations, on the basis of predicted stability. Here, we use it to target the active site region of a minimalist-designed, de novo Kemp eliminase. The similarity between the Michaelis complex and transition state for the enzymatic reaction makes this system particularly challenging to optimize. Yet, experimental screening of a small number of active-site variants at the top of the predicted stability ranking leads to catalytic efficiencies and turnover numbers ( 2 104 M 1 s 1 and 102 s 1) for this anthropogenic reaction that compare favorably to those of modern natural enzymes. This result illustrates the promise of FuncLib as a powerful tool with which to speed up directed evolution, even on scaffolds that were not originally evolved for those functions, by guiding screening to regions of the sequence space that encode stable and catalytically diverse enzymes. Empirical valence bond calculations reproduce the experimental activation energies for the optimized eliminases to within 2 kcal mol 1 and indicate that the enhanced activity is linked to better geometric preorganization of the active site. This raises the possibility of further enhancing the stabilityguidance of FuncLib by computational predictions of catalytic activity, as a generalized approach for computational enzyme designKnut and Alice Wallenberg Foundation (Wallenberg Academy Fellowship) 2018.0140Human Frontier Science Program RGP0041/2017FEDER Funds/Spanish Ministry of Science, Innovation and Universities BIO2015-66426-R RTI2018-097142-B-100FEDER/Junta de Andalucia - Consejeria de Economia y Conocimiento E.FQM.113.UGR18Swedish National Infrastructure for computing (SNAC) 2018/2-3 2019/2-

    Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research

    Get PDF
    This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry

    Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset

    Get PDF
    The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono-and diester hydrolyses were only marginally affected (<= 50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E.S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (beta(leaving) (group) from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes

    The Alkaline Hydrolysis of Sulfonate Esters: Challenges in Interpreting Experimental and Theoretical Data

    Get PDF
    Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem. 10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data
    • …
    corecore