35 research outputs found

    The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans

    Get PDF
    Following the advent of industrial-scale antibiotic production in the 1940s,1 antimicrobial resistance (AMR) has been on the rise and now poses a major global health threat in terms of mortality, morbidity, and economic burden.2,3 Because AMR can be exchanged between humans, livestock, and wildlife, wild animals can be used as indicators of human-associated AMR contamination of the environment.4 However, AMR is a normal function of natural environments and is present in host-associated microbiomes, which makes it challenging to distinguish between anthropogenic and natural sources.4,5 One way to overcome this difficulty is to use historical samples that span the period from before the mass production of antibiotics to today. We used shotgun metagenomic sequencing of dental calculus, the calcified form of the oral microbial biofilm, to determine the abundance and repertoire of AMR genes in the oral microbiome of Swedish brown bears collected over the last 180 years. Our temporal metagenomics approach allowed us to establish a baseline of natural AMR in the pre-antibiotics era and to quantify a significant increase in total AMR load and diversity of AMR genes that is consistent with patterns of national human antibiotic use. We also demonstrated a significant decrease in total AMR load in bears in the last two decades, which coincides with Swedish strategies to mitigate AMR. Our study suggests that public health policies can be effective in limiting human-associated AMR contamination of the environment and wildlife

    Incisor enamel microstructure places New and Old World Eomyidae outside Geomorpha (Rodentia, Mammalia)

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaThe lower incisor enamel microstructure of the fossil rodent family Eomyidae was believed to be three-layered and highly derived but rather uniform throughout the clade. Here, we describe a new four-layered schmelzmuster in Eomyidae consisting of a three-fold portio interna with longitudinal oriented, uniserial Hunter-Schreger bands and a one-fold portio externa, accounting for a unique enamel microstructure character combination in Rodentia. This new schmelzmuster type has developed early in eomyid evolution and is detectable already in the late Eocene (Chadronian) of North America. In European eomyids, it first occurs in the early Miocene (MN 3), implying that this four-layered schmelzmuster was not present in all members of the family but restricted to species included in Eomyini and some genera currently considered Eomyidae incertae sedis within Eomyidae. Additionally, our analysis recognizes three taxa with schmelzmuster divergent from all other eomyids. Incisor enamel microstructure does not advocate a close phylogenetic relationship of Eomyidae to either fossil or extant Heteromyidae and Geomyidae, nor to fossil Heliscomyidae and Florentiamyidae. Our results rather support the view that Eomyidae are placed outside Geomorpha

    Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals

    Get PDF
    Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.publishedVersio

    A new mammal from the Turonian–Campanian (Upper Cretaceous) Galula Formation, southwestern Tanzania

    Get PDF
    We here establish a new mammaliaform genus and species, Galulatherium jenkinsi (Mammalia), from the Upper Cretaceous Galula Formation in the Rukwa Rift Basin of southwestern Tanzania. This represents the first named taxon of a mammaliaform from the entire Late Cretaceous of continental Afro-Arabia, an interval of 34 million years. Preliminary study of the holotypic and only known specimen (a partial dentary) resulted in tentative assignation to the Gondwanatheria, a poorly known, enigmatic clade of Late Cretaceous–Paleogene Gondwanan mammals (Krause et al. 2003). The application of advanced imaging (μCT) and visualization techniques permits a more detailed understanding of key anatomical features of the new taxon. It reveals that the lower dentition consisted of a large, procumbent lower incisor and four cheek teeth, all of which were evergrowing (hypselodont). Importantly, all of the teeth appear devoid of enamel. Comparisons conducted with a range of Mesozoic and selected Cenozoic mammaliaform groups document a number of features (e.g., columnar, enamel-less and evergrowing teeth, with relatively simple occlusal morphology) expressed in Galulatherium that are reminiscent of several distantly related groups, making taxonomic assignment difficult at this time. Herein we retain the provisional referral of Galulatherium (RRBP 02067) to Gondwanatheria; it is most similar to sudamericids such as Lavanify and Bharratherium from the Late Cretaceous of Madagascar and India, respectively, in exhibiting relatively simple, high-crowned, columnar cheek teeth. Other features (e.g., enamel-less dentition) are shared with disparate forms such as the Late Jurassic Fruitafossor and toothed xenarthrans (e.g., sloths), here attributed to convergence. Revised analyses of the depositional context for the holotype place it as having lived sometime between the late Turonian and latest Campanian (roughly 91–72 million years ago). This enhanced geochronological context helps to refine the palaeobiogeographical significance of Galulatherium among Cretaceous mammals in general and those from Gondwanan landmasses specifically

    Extinctions, genetic erosion and conservation options for the black rhinoceros (Diceros bicornis)

    Get PDF
    The black rhinoceros is again on the verge of extinction due to unsustainable poaching in its native range. Despite a wide historic distribution, the black rhinoceros was traditionally thought of as depauperate in genetic variation, and with very little known about its evolutionary history. This knowledge gap has hampered conservation efforts because hunting has dramatically reduced the species’ once continuous distribution, leaving five surviving gene pools of unknown genetic affinity. Here we examined the range-wide genetic structure of historic and modern populations using the largest and most geographically representative sample of black rhinoceroses ever assembled. Using both mitochondrial and nuclear datasets, we described a staggering loss of 69% of the species’ mitochondrial genetic variation, including the most ancestral lineages that are now absent from modern populations. Genetically unique populations in countries such as Nigeria, Cameroon, Chad, Eritrea, Ethiopia, Somalia, Mozambique, Malawi and Angola no longer exist. We found that the historic range of the West African subspecies (D. b. longipes), declared extinct in 2011, extends into southern Kenya, where a handful of individuals survive in the Masai Mara. We also identify conservation units that will help maintain evolutionary potential. Our results suggest a complete re-evaluation of current conservation management paradigms for the black rhinoceros

    Historic sampling of a vanishing beast: Population structure and diversity in the Black Rhinoceros

    Get PDF
    The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north–south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity

    Biomechanical adaptations for burrowing in the incisor enamel microstructure of Geomyidae and Heteromyidae (Rodentia: Geomyoidea)

    No full text
    The enamel microstructure of fossil and extant Geomyoidea (Geomyidae, Heteromyidae) lower incisors incorporates three- or two-layered schmelzmusters with uniserial, transverse Hunter-Schreger bands having parallel and perpendicular or exclusively perpendicular oriented interprismatic matrix. Phylogenetically, these schmelzmusters are regarded as moderately (enamel type 2) to highly derived (enamel type 3). Our analysis detected a zone of modified radial enamel close to the enamel–dentine junction. Modified radial enamel shows a strong phylogenetic signal within the clade Geomorpha as it is restricted to fossil and extant Geomyoidea and absent in Heliscomyidae, Florentiamyidae, and Eomyidae. This character dates back to at least the early Oligocene (early Arikareean, 29 Ma), where it occurs in entoptychine gophers. We contend that this specialized incisor enamel architecture developed as a biomechanical adaptation to regular burrowing activities including chisel-tooth digging and a fiber-rich diet and was probably present in the common ancestor of the clade. We regard the occurrence of modified radial enamel in lower incisors of scratch-digging Geomyidae and Heteromyidae as the retention of a plesiomorphic character that is selectively neutral. The shared occurrence of modified radial enamel is a strong, genetically anchored argument for the close phylogenetic relationship of Geomyidae and Heteromyidae on the dental microstructure level

    Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae)

    No full text
    Xenarthran teeth are rootless and continuously growing. They lack an outer enamel layer and consist instead of a combination of 2 generally different varieties of dentine with or without an outer collar of cementum. This dental make-up is unique among mammals. In the last decade, xenarthran teeth have been subject to a number of studies regarding microscopic features, including analyses of microstructure and microwear patterns. Here, we present a review of the present knowledge in these 2 fields together with new results on feeding adaptations in the giant ground sloth, Megatherium americanum. Microwear patterns suggest that M. americanum fed mainly on plants with low to moderate intrinsic toughness, although we observe a trend that microwear patterns in extinct sloths may reflect habitat (i.e., feeding in open habitats with higher amounts of grit versus closed habitats with lower amounts of grit) as much as, if not more than, the texture of ingested food. Los dientes Xenarthran no tienen raíz y permanecen en continuo crecimiento. Carecen de la capa de esmalte exterior y consisten en una combinación de dos variedades generalmente diferentes de dentina con o sin un collar exterior de cemento. Este patrón dental es único entre los mamíferos. En la última década, los dientes xenarthran han sido objeto de estudio en relación a las características microscópicas, incluyendo análisis de los patrones de microestructura y microdesgaste. A continuación presentamos una revisión de los conocimientos actuales en estos 2 campos, y nuevos resultados sobre adaptaciones de alimentación en el perezoso gigante, Megatherium americanum. Los patrones de microdesgaste encontrados sugieren que M. americanum se alimentaba principalmente de plantas con baja a moderada dureza intrínseca, aunque se observa una tendencia a que los patrones de microdesgaste en perezosos extintos siempre son un reflejo del hábitat (es decir, que se alimentan en hábitats abiertos, con una mayor cantidad de grano en comparación con los hábitats cerrados con cantidades más bajas de grano) tanto o más que la textura de los alimentos ingeridos.</p
    corecore