270 research outputs found

    Overview of the biology of type I interferons

    Get PDF
    Type I interferons are pleiotropic cytokines with antiviral, antitumor and immunoregulatory functions. An aspect of their complex biology is the paradox that, depending on context, type I interferons can be anti-inflammatory and tissue protective or can be proinflammatory and promote autoimmunity. Along these lines, the activation of type I interferon pathways is effective in suppressing disease activity in patients with multiple sclerosis and in animal models of arthritis and colitis, while there is an expectation that blockade of the same pathways will be beneficial in the treatment of patients with systemic lupus erythematosus

    Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect?

    Get PDF
    Data from basic science experiments is overwhelmingly supportive of the causal role of immune-inflammatory response(s) at the core of atherosclerosis, and therefore the theoretical potential to manipulate the inflammatory response to prevent cardiovascular events. However, extrapolation to humans requires care and we still lack definitive evidence to show that interfering in immune-inflammatory processes may safely lessen clinical atherosclerosis. In this review, we discuss key therapeutic targets in the treatment of vascular inflammation, placing basic research in to a wider clinical perspective, as well as identifying outstanding questions

    Intradialytic Complement Activation Precedes the Development of Cardiovascular Events in Hemodialysis Patients

    Get PDF
    Background: Hemodialysis (HD) is a life-saving treatment for patients with end stage renal disease. However, HD patients have markedly increased rates of cardiovascular morbidity and mortality. Previously, a link between the complement system and cardiovascular events (CV-events) has been reported. In HD, systemic complement activation occurs due to blood-to-membrane interaction. We hypothesize that HD-induced complement activation together with inflammation and thrombosis are involved in the development of CV-events in these patients. Methods: HD patients were followed for the occurrence of CV-events during a maximum follow-up of 45 months. Plasma samples were collected from 55 patients at different time points during one HD session prior to follow-up. Plasma levels of mannose-binding lectin, properdin and C3d/C3 ratios were assessed by ELISA. In addition, levels of von Willebrand factor, TNF-α and IL-6/IL-10 ratios were determined. An ex-vivo model of HD was used to assess the effect of complement inhibition. Results: During median follow-up of 32 months, 17 participants developed CV-events. In the CV-event group, the C3d/C3-ratio sharply increased 30 min after the start of the HD session, while in the event-free group the ratio did not increase. In accordance, HD patients that developed a CV-event also had a sustained higher IL-6/IL-10-ratio during the first 60 min of the HD session, followed by a greater rise in TNF-α levels and von Willebrand factor at the end of the session. In the ex-vivo HD model, we found that complement activation contributed to the induction of TNF-α levels, IL-6/IL-10-ratio and levels of von Willebrand factor. Conclusions: In conclusion, these findings suggest that early intradialytic complement activation predominantly occurred in HD patients who develop a CV-event during follow-up. In addition, in these patients complement activation was accompanied by a pro-inflammatory and pro-thrombotic response. Experimental complement inhibition revealed that this reaction is secondary to complement activation. Therefore, our data suggests that HD-induced complement, inflammation and coagulation are involved in the increased CV risk of HD patients.info:eu-repo/semantics/publishedVersio

    Bruton's tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment

    Get PDF
    Tumour necrosis factor (TNF) is produced by primary human macrophages in response to stimulation by exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) via Toll-like receptor (TLR) signalling. However, uncontrolled TNF production can be deleterious and hence it is tightly controlled at multiple stages. We have previously shown that Bruton's tyrosine kinase (Btk) regulates TLR4-induced TNF production via p38 MAP Kinase by stabilising TNF messenger RNA. Using both gene over-expression and siRNA-mediated knockdown we have examined the role of Btk in TLR7/8 mediated TNF production. Our data shows that Btk acts in the TLR7/8 pathway and mediates Ser-536 phosphorylation of p65 RelA and subsequent nuclear entry in primary human macrophages. These data show an important role for Btk in TLR7/8 mediated TNF production and reveal distinct differences for Btk in TLR4 versus TLR7/8 signalling

    TNF is required for TLR ligand–mediated but not protease-mediated allergic airway inflammation

    Get PDF
    Asthma is associated with exposure to a wide variety of allergens and adjuvants. The extent to which overlap exists between the cellular and molecular mechanisms triggered by these various agents is poorly understood, but it might explain the differential responsiveness of patients to specific therapies. In particular, it is unclear why some, but not all, patients benefit from blockade of TNF. Here, we characterized signaling pathways triggered by distinct types of adjuvants during allergic sensitization. Mice sensitized to an innocuous protein using TLR ligands or house dust extracts as adjuvants developed mixed eosinophilic and neutrophilic airway inflammation and airway hyperresponsiveness (AHR) following allergen challenge, whereas mice sensitized using proteases as adjuvants developed predominantly eosinophilic inflammation and AHR. TLR ligands, but not proteases, induced TNF during allergic sensitization. TNF signaled through airway epithelial cells to reprogram them and promote Th2, but not Th17, development in lymph nodes. TNF was also required during the allergen challenge phase for neutrophilic and eosinophilic inflammation. In contrast, TNF was dispensable for allergic airway disease in a protease-mediated model of asthma. These findings might help to explain why TNF blockade improves lung function in only some patients with asthma

    IL-27 Regulates IL-18 Binding Protein in Skin Resident Cells

    Get PDF
    IL-18 is an important mediator involved in chronic inflammatory conditions such as cutaneous lupus erythematosus, psoriasis and chronic eczema. An imbalance between IL-18 and its endogenous antagonist IL-18 binding protein (BP) may account for increased IL-18 activity. IL-27 is a cytokine with dual function displaying pro- and anti-inflammatory properties. Here we provide evidence for a yet not described anti-inflammatory mode of action on skin resident cells. Human keratinocytes and surprisingly also fibroblasts (which do not produce any IL-18) show a robust, dose-dependent and highly inducible mRNA expression and secretion of IL-18BP upon IL-27 stimulation. Other IL-12 family members failed to induce IL-18BP. The production of IL-18BP peaked between 48–72 h after stimulation and was sustained for up to 96 h. Investigation of the signalling pathway showed that IL-27 activates STAT1 in human keratinocytes and that a proximal GAS site at the IL-18BP promoter is of importance for the functional activity of IL-27. The data are in support of a significant anti-inflammatory effect of IL-27 on skin resident cells. An important novel property of IL-27 in skin pathobiology may be to counter-regulate IL-18 activities by acting on keratinocytes and importantly also on dermal fibroblasts
    • …
    corecore