348 research outputs found

    Circular edge-colorings of cubic graphs with girth six

    Get PDF
    We show that the circular chromatic index of a (sub)cubic graph with girth at least six is at most 7/2.Comment: 13 pages, 6 figure

    Etiology of community-acquired pneumonia in hospitalized children based on WHO clinical guidelines

    Get PDF
    Community-acquired pneumonia (CAP) is a major cause of death in developing countries and of morbidity in developed countries. The objective of the study was to define the causative agents among children hospitalized for CAP defined by WHO guidelines and to correlate etiology with clinical severity and surrogate markers. Investigations included an extensive etiological workup. A potential causative agent was detected in 86% of the 99 enrolled patients, with evidence of bacterial (53%), viral (67%), and mixed (33%) infections. Streptococcus pneumoniae was accounted for in 46% of CAP. Dehydration was the only clinical sign associated with bacterial pneumonia. CRP and PCT were significantly higher in bacterial infections. Increasing the number of diagnostic tests identifies potential causes of CAP in up to 86% of children, indicating a high prevalence of viruses and frequent co-infections. The high proportion of pneumococcal infections re-emphasizes the importance of pneumococcal immunizatio

    LoCuSS: A Comparison of Sunyaev-Zel'dovich Effect and Gravitational Lensing Measurements of Galaxy Clusters

    Get PDF
    We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z~0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M_GL) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M_GL and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T_X. We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T_X on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M_GL = 0.98+/-0.13 M_HSE), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the Sunyaev-Zel'dovich effect may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.Comment: Minor changes to match published version: 2009 ApJL 701:114-11

    Spatial and Temporal Patterns in Atmospheric Deposition of Dissolved Organic Carbon

    Get PDF
    Atmospheric deposition of dissolved organic carbon (DOC) to terrestrial ecosystems is a small, but rarely studied component of the global carbon (C) cycle. Emissions of volatile organic compounds (VOC) and organic particulates are the sources of atmospheric C and deposition represents a major pathway for the removal of organic C from the atmosphere. Here, we evaluate the spatial and temporal patterns of DOC deposition using 70 data sets at least one year in length ranging from 40° south to 66° north latitude. Globally, the median DOC concentration in bulk deposition was 1.7 mg L−1. The DOC concentrations were significantly higher in tropical (25°) latitudes. DOC deposition was significantly higher in the tropics because of both higher DOC concentrations and precipitation. Using the global median or latitudinal specific DOC concentrations leads to a calculated global deposition of 202 or 295 Tg C yr−1 respectively. Many sites exhibited seasonal variability in DOC concentration. At temperate sites, DOC concentrations were higher during the growing season; at tropical sites, DOC concentrations were higher during the dry season. Thirteen of the thirty-four long-term (>10 years) data sets showed significant declines in DOC concentration over time with the others showing no significant change. Based on the magnitude and timing of the various sources of organic C to the atmosphere, biogenic VOCs likely explain the latitudinal pattern and the seasonal pattern at temperate latitudes while decreases in anthropogenic emissions are the most likely explanation for the declines in DOC concentration.publishedVersio

    Spatial and Temporal Patterns in Atmospheric Deposition of Dissolved Organic Carbon

    Get PDF
    Atmospheric deposition of dissolved organic carbon (DOC) to terrestrial ecosystems is a small, but rarely studied component of the global carbon (C) cycle. Emissions of volatile organic compounds (VOC) and organic particulates are the sources of atmospheric C and deposition represents a major pathway for the removal of organic C from the atmosphere. Here, we evaluate the spatial and temporal patterns of DOC deposition using 70 data sets at least one year in length ranging from 40° south to 66° north latitude. Globally, the median DOC concentration in bulk deposition was 1.7 mg L1^{−1}. The DOC concentrations were significantly higher in tropical (25°) latitudes. DOC deposition was significantly higher in the tropics because of both higher DOC concentrations and precipitation. Using the global median or latitudinal specific DOC concentrations leads to a calculated global deposition of 202 or 295 Tg C yr1^{−1} respectively. Many sites exhibited seasonal variability in DOC concentration. At temperate sites, DOC concentrations were higher during the growing season; at tropical sites, DOC concentrations were higher during the dry season. Thirteen of the thirty-four long-term (>10 years) data sets showed significant declines in DOC concentration over time with the others showing no significant change. Based on the magnitude and timing of the various sources of organic C to the atmosphere, biogenic VOCs likely explain the latitudinal pattern and the seasonal pattern at temperate latitudes while decreases in anthropogenic emissions are the most likely explanation for the declines in DOC concentration

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of potential systematics

    Get PDF
    We analyze the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400,000 galaxies spread over a footprint of 3,275 deg^2. We identify, characterize, and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 < z < 0.7) galaxy sample (the `CMASS' sample) due to imaging systematics imparts a systematic error that is larger than the statistical error of the clustering measurements at scales s > 120h^-1Mpc or k < 0.01hMpc^-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. We use mock galaxy catalogs that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate the radial selection function of a random sample imparts the least systematic error on correlation function measurements and that this systematic error is negligible for the spherically averaged correlation function. The methods we recommend for the calculation of clustering measurements using the CMASS sample are adopted in companion papers that locate the position of the baryon acoustic oscillation feature (Anderson et al. 2012), constrain cosmological models using the full shape of the correlation function (Sanchez et al. 2012), and measure the rate of structure growth (Reid et al. 2012). (abridged)Comment: Matches version accepted by MNRAS. Clarifications and references have been added. See companion papers that share the "The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:" titl

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

    Get PDF
    BackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks
    corecore