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Circular edge-colorings of cubic graphs with

girth six

Daniel Král’∗ Edita Máčajová† Ján Mazák‡

Jean-Sébastien Sereni§

Abstract

We show that the circular chromatic index of a (sub)cubic graph
with odd-girth at least 7 is at most 7/2.

1 Introduction

A classical theorem of Vizing [14] asserts that the chromatic index of every
cubic bridgeless graph, i.e., the smallest number of colors needed to properly
edge-color such a graph, is 3 or 4. Cubic cyclically 4-edge-connected graphs
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with chromatic index 4 are known as snarks and it is known that smallest
counter-examples, if any, to several deep open conjectures in graph theory,
such as the Cycle Double Cover Conjecture, must be snarks.

Our research is motivated by edge-colorings of cubic bridgeless graphs
with no short cycles. The Girth Conjecture of Jaeger and Swart [5] asserted
that there are no snarks with large girth. This conjecture was refuted by Ko-
chol [8] who constructed snarks of arbitrary large girth. Hence, it is natural
to ask whether it can be said that snarks of large girth are close to being
3-edge-colorable in some sense.

One of the relaxations of ordinary colorings are circular colorings, intro-
duced by Vince [13]. A (p, q)-coloring of a graph G is a coloring of vertices
with colors from the set {1, . . . , p} such that any two adjacent vertices receive
colors a and b with q ≤ |a − b| ≤ p − q. Circular colorings naturally appear
in different settings, which is witnessed by several equivalent definitions of
this notion as exposed in the surveys by Zhu [15, 16].

The infimum of the ratios p/q such that G has a (p, q)-coloring is the
circular chromatic number of G. It is known that the infimum is the minimum
for all finite graphs and the ceiling of the circular chromatic number of a graph
is equal to its chromatic number. Thus, the circular chromatic number is a
fractional relaxation of the chromatic number. The circular chromatic index

of a graph is the circular chromatic number of its line-graph.
Zhu [15] asked whether there exist snarks with circular chromatic index

close or equal to 4, and as there are snarks with arbitrary large girth, it is
also interesting to know whether there exist such snarks of arbitrary large
girth. Afshani et al. [1] showed that the circular chromatic index of every
cubic bridgeless graph is at most 11/3 and Kaiser et al. [6] showed that for
every ε > 0, there exists g such that every cubic bridgeless graph with girth
at least g has circular chromatic index at most 3 + ε. This latter result
was generalized to graphs with bounded maximum degree [7]. Moreover, the
circular chromatic indices of several well-known classes of snarks have been
determined [2, 3, 4, 10].

The Petersen graph is the only cubic bridgeless graph that is known to
have the circular chromatic index equal to 11/3. In fact, it is the only example
of a cubic bridgeless graph with circular chromatic index greater than 7/2.
This leads to the following (wild) conjecture.

Conjecture 1. Every cubic bridgeless graph different from the Petersen

graph has circular chromatic index strictly less than 11/3, maybe, at most
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7/2.

In their paper, Kaiser et al. [6], formulated a problem to determine the
smallest girth g0 such that every cubic bridgeless graph with girth at least
g0 has circular chromatic index at most 7/2, and they showed that g0 ≤ 14.
Note that g0 ≥ 6 because of the Petersen graph. In this paper, we prove that
every cubic bridgeless graph having a 2-factor composed of cycles of length
different from 3 and 5 has circular chromatic index at most 7/2. This implies
that g0 = 6, i.e., the circular chromatic index of every cubic bridgeless graph
with girth at least 6 is at most 7/2. Our result also applies to subcubic
graphs with odd-girth at least 7.

2 Compatible trails

The core of our argument is formed by decomposing the graph obtained by
contracting a 2-factor of a cubic bridgeless graph into trails. We first intro-
duce notation related to such decompositions and then prove their existence.

2.1 Notation

An abstract map is a graph with multiple edges, loops and half-edges allowed
with a fixed cyclic ordering of the ends around each vertex. Formally, an
abstract map (V, E, ϕ) is comprised of a vertex-set V and an edge-set E.
Each edge has two ends: one of them is incident with a vertex, and the other
may, but need not, be incident with a vertex. An edge that has exactly one
end incident with a vertex is a half-edge. An edge with both ends incident
with the same vertex is a loop. The degree dv of a vertex v ∈ V is the number
of ends incident with v (in particular, loops are counted twice). Moreover,
for each vertex, there is a cyclic ordering of the ends incident with it. These
orderings are represented by a surjective mapping ϕ : V × N → E such
that ϕ(v, n) is an edge incident with v and ϕ(v, n) = ϕ(v, n + dv) for every
(v, n) ∈ V ×N. An edge has two pre-images in {v}×{1, . . . , dv} if and only if
it is a loop incident with v. An abstract map naturally yields an embedding
of the corresponding multi-graph on a surface.

Deleting a vertex v ∈ V from an abstract map G = (V, E, ϕ) yields an
abstract map G′ = (V ′, E ′, ϕ′) with V ′ = V \ {v}, E ′ = ϕ(V ′ × N) and ϕ′

being the restriction of ϕ to V ′ × N. In other words, the vertex v and half-
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edges and loops incident with v are removed. The other edges incident with
v become half-edges.

A trail in an abstract map is a sequence of mutually distinct edges
e1, e2, . . . , ek such that

• ei and ei+1 have a common end-vertex vi, for i ∈ {1, . . . , k − 1}; and

• vi−1 6= vi unless ei is a loop, for i ∈ {2, . . . , k − 1}.

If e1 is not a half-edge, then the trail starts at a vertex. Similarly, if ek is not
a half-edge, the trail ends at a vertex. Furthermore, a trail that consists of
a single half-edge either starts or ends at a vertex. For a given trail, a linear
ordering on its edges is naturally defined. Let T1 and T2 be two edge-disjoint
trails and v a vertex. If T1 ends at v and T2 starts at v, then we can link the
two trails by identifying the end of T1 with the beginning of T2: thereby, we
obtain a new trail that first follows the edges of T1 and then those of T2. We
also define the linking of a trail T that starts and ends at the same vertex
with itself: in this case, we obtain the same trail T except that the ordering
of the edges becomes cyclic. A trail obtained in this way is closed. Trails
that are not closed are open. Note that a trail that starts and ends at the
same vertex can be either open or closed.

Trails W1, . . . ,WK form a compatible decomposition of an abstract map
G if all of them are open, every edge is contained in exactly one of the trails
and for every vertex v of odd degree of G, there is an index iv such that the
following pairs of edges are consecutive (regardless of their order) in some of
the trails (and thus are not the same edge):

• ϕ(v, iv) and ϕ(v, iv + 5);

• ϕ(v, iv + 1) and ϕ(v, iv + 3); and

• ϕ(v, iv + 2) and ϕ(v, iv + 4).

Note that if an abstract map G has a compatible decomposition, then it has
no vertices of degree 1 or 5.

2.2 Existence

We now prove that every abstract map with no vertices of degree 1, 3 or 5 has
a compatible decomposition. In the next two lemmas, which form the base
of our inductive argument, abstract maps with a single vertex are analyzed.
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e1 e2 e3 e4 e5 e6 e7 e1 e2 e3 e4 e5 e6 e7

e1 e2 e3 e4 e5 e6 e7

e1 e2 e3 e4 e5 e6 e7

e1 e2 e3 e4 e5 e6 e7

e1 e2 e3 e4 e5 e6 e7

Figure 1: Compatible decompositions in the first (the top two pictures) and
the last four (the remaining pictures) main cases in the proof of Lemma 1.
The edges incident with the vertex v are drawn with solid lines and the way
in which they are joined to form the trails of the decomposition is indicated
by dashed lines.

Lemma 1. Every abstract map G that has a single vertex and the degree of

this vertex is 7 has a compatible decomposition.

Proof. Let v be the vertex and let ei be the image of ϕ(v, i) for each i ∈
{1, 2, . . . , 7}. Further, let Wi be the set of trails obtained by the following
process: initially, each edge of G forms a single trail. We then link the two
trails starting or ending with ei and ei+5, next we link the two trails starting or
ending with ei+1 and ei+3, and last the two trails starting or ending with ei+2

and ei+4. This operation does not always yield a compatible decomposition,
since it may create closed trails. For instance, Wi contains a closed trail if
ei = ei+5, or if ei+1 = ei+4 and ei+2 = ei+3 (in this last case, after having
linked ei+1 with ei+3, thereby obtaining a trail T , the last linking amounts
to linking T with itself). On the other hand, if all the obtained trails are
open, then Wi is a compatible decomposition, with i being the index iv of
the definition.

Our goal is to show that at least one of the sets Wi is composed only of
open trails. Since the degree of v is odd, the vertex v is incident with at least
one half-edge. By symmetry, we assume that this half-edge is e4.

If W1 contains a closed trail, then one of the following four cases applies
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(recall that e4 is a half-edge):

• e1 = e6,

• e3 = e5,

• e1 = e3 and e5 = e6, or

• e1 = e5 and e3 = e6.

Similarly, if W2 contains a closed trail, then one of the following four cases
applies:

• e2 = e7,

• e3 = e5,

• e2 = e3 and e5 = e7, or

• e2 = e5 and e3 = e7.

Comparing the two sets of four possible cases, we conclude that if none of
W1 and W2 is compatible, then at least one of the following six cases applies
(these cases are referred to as main cases in Figures 1 and 2):

• e1 = e6 and e2 = e7,

• e3 = e5,

• e1 = e3, e5 = e6 and e2 = e7,

• e1 = e5, e3 = e6 and e2 = e7,

• e1 = e6, e2 = e3 and e5 = e7, or

• e1 = e6, e2 = e5 and e3 = e7.

In the first case, the set W3 contains only open trails. In the last four cases,
the sets W4, W3, W6 and W7, respectively, are composed of open trails (see
Figure 1 for an illustration).

We now focus on the second case. If W3 contains a closed trail (and
e3 = e5), it holds that e1 = e7. However, in this case, the set W4 contains no
closed trails (see Figure 2). This finishes the proof of the lemma.
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e1 e2 e3 e4 e5 e6 e7 e1 e2 e3 e4 e5 e6 e7

Figure 2: Compatible decompositions in the second main case in the proof
of Lemma 1.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 e2 e3 e4 e5 e6 e7 e8 e9 e1 e2 e3 e4 e5 e6 e7 e8 e9

Figure 3: Compatible decompositions in the last four cases in the proof of
Lemma 2. Additional loops that can also be present are drawn with dotted
lines.

Lemma 2. Every abstract map G that has a single vertex and the degree of

this vertex is different from 1, 3 and 5 has a compatible decomposition.

Proof. Let v be the only vertex of the graph G. If the degree of v is even,
then there is nothing to prove as every decomposition into open trails is
compatible. If the degree of v is 7, then the statement follows from Lemma 1.
Hence, we assume that the degree of v is odd and it is at least 9. Let ei be
the image of ϕ(v, i) for i ∈ {1, 2, . . . , 9}.

As the degree of v is odd, v is incident with at least one half-edge. Without
loss of generality, we can assume that e5 is the half-edge. Let Wi be the set
of trails defined as in the proof of Lemma 1. Assume that both the sets W2

and W3 contain a closed trail; if any of them were composed of open trails
only, then it would form a compatible decomposition.

As in the proof of Lemma 1, we infer from the facts that both W2 and
W3 contain a closed trail that one of the following six cases applies (replace
e4 with e5 and Wi with Wi+1 for i ∈ {1, 2} in the analysis done in the proof
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e1 e2 e3 e4 e5 e6 e7 e8 e9
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Figure 4: Compatible decompositions in the case where e2 = e7 and e3 = e8

in the proof of Lemma 2. Two cases are distinguished based on whether the
degree of v is equal to 9 or not.

of Lemma 1):

• e2 = e7 and e3 = e8,

• e4 = e6,

• e2 = e4, e6 = e7 and e3 = e8,

• e2 = e6, e4 = e7 and e3 = e8,

• e2 = e7, e3 = e4 and e6 = e8, or

• e2 = e7, e3 = e6 and e4 = e8.

In the last four cases, the sets W4, W4, W1 and W1, respectively, contain no
closed trails (see Figure 3 for an illustration). Let us focus on the first two
cases, now.

Suppose that e2 = e7 and e3 = e8. If W1 contains a closed trail, then
e1 = e6. Further, if W4 contains a closed trail, then e4 = e9. Thus, the
set W5 contains no closed trails (see Figure 4), and hence is a compatible
decomposition.

Assume now that e4 = e6. If W1 contains a closed trail, then e1 = e2.
Further, if W4 contains a closed trail, then e8 = e9. Again, the set W5 is
then a compatible decomposition (see Figure 5).

To summarize, we have shown that at least one of the sets Wi, i ∈
{1, 2, 3, 4, 5}, is composed of open trails only, and thus it forms a compatible
decomposition.

Using Lemma 2, we show that every abstract map with no vertices of
degree 1, 3 or 5 has a compatible decomposition.
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e1 e2 e3 e4 e5 e6 e7 e8 e9
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Figure 5: Compatible decompositions in the case where e4 = e6 in the proof
of Lemma 2. Two cases are distinguished based on whether the degree of
v is equal to 9 or not. Additional loops that can also be present are drawn
with dotted lines.

Lemma 3. Every abstract map G without vertices of degree 1, 3 or 5 has a

compatible decomposition.

Proof. The proof proceeds by induction on the number of vertices of G. If
G has one vertex, then the statement follows from Lemma 2. Otherwise,
let v be an arbitrary vertex of G and let G′ be an abstract map obtained
from G by removing v. By the induction hypothesis, G′ has a compatible
decomposition W ′ into trails.

Let W be the set of trails obtained from W ′ by adding the set of loops
and half-edges incident with v in G. Observe that W is a set of trails of G
in which there is no trail “traversing” v. If the degree of v is even, the set
W is a compatible decomposition of G as there is no restriction on how the
trails pass through the vertex v. Assume that the degree dv of v is odd.

We now define an auxiliary abstract map H. The abstract map H con-
tains a single vertex w of degree dv, and for (i, j) ∈ {1, 2, . . . , dv}

2, we have
ϕ(w, i) = ϕ(w, j) if and only if W contains a trail starting with the edge
ϕ(v, i) and ending with ϕ(v, j). In other words, trails of W ′ that both start
and finish with an edge incident with v correspond in H to loops incident
with w, the loops incident with v are preserved and the trails starting or
finishing at v (but not both) correspond to half-edges. Trails containing no
edge incident with v have no counterparts among the edges of H.

By Lemma 2, the abstract map H has a compatible decomposition WH .
We can now obtain a compatible decomposition WG of G as follows: all the
trails of W neither starting nor ending at v are added to WG. Each trail W
of WH has a corresponding trail in WG that is obtained by replacing every
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edge of W with the corresponding trail of W and linking these trails.
It is straightforward to verify that WG is a set of open trails of G. By

induction, the trails pass through vertices of G different from v in the way
required by the definition of a compatible decomposition. The trails also pass
through v in the required way because WH is a compatible decomposition of
H. Hence, WG is a compatible decomposition of G.

3 Graphs with odd-girth at least 7

We are now ready to prove our main theorem.

Theorem 4. The circular chromatic index of every cubic graph with a 2-
factor composed of cycles of lengths different from 3 and 5 is at most 7/2.

Proof. Let G be a cubic graph and F a 2-factor of G composed of cycles of
lengths different from 3 and 5, and let M be the perfect matching comple-
mentary to F . The multi-graph obtained by contracting F can be viewed
as an abstract map H: the vertices of H correspond to the cycles of the
2-factor F , and the order in which the edges of M are incident with cycles
of F naturally defines the function ϕ. Note that H has no half-edges and its
loops correspond to chords of cycles of F .

Since no cycle of F has length 3 or 5, no vertex of H has degree 1, 3 or 5.
Thus, by Lemma 3, the abstract map H has a compatible decomposition W .
Color the edges of every trail of W with 0 and 1 in an alternating way. Since
the edges of H correspond one-to-one to the edges of M , we have obtained
a coloring of the edges of M with 0 and 1.

We now construct a (7, 2)-edge-coloring of the edges of G. Let C =
v0v1 · · · vℓ−1 be a cycle of F and ci the color of the edge of M incident with
the vertex vi, for i ∈ {0, 1, . . . , ℓ − 1}. If the length ℓ of C is even, we color
the edges of C with 3 and 5 in an alternating way. Let us consider the case
where ℓ is odd. Since W is a compatible decomposition, there exists an index
k such that ck 6= ck+5, ck+1 6= ck+3 and ck+2 6= ck+4 (indices are taken modulo
ℓ) as the colors of the edges of trails of W alternate.

We now show that there exists an index k′ such that ck′ = ck′+1 6= ck′+2 =
ck′+3. If ck+1 = ck+2, then set k′ = k + 1. Otherwise, ck+1 = ck+4 6= ck+2 =
ck+3. Since either ck or ck+5 is equal to ck+1 = ck+4, the index k′ can be set
to k or k + 2.
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0 0 1 1
5 2 4 6 3

Figure 6: Coloring odd cycles in the proof of Theorem 4.

By symmetry, we can assume in the remainder that k′ = 1, c1 = c2 = 0
and c3 = c4 = 1. Color the edge v1v2 with 2, the edge v2v3 with 4 and
the edge v3v4 with 6. The remaining edges are colored with 3 and 5 in the
alternating way (see Figure 6). We have obtained a proper coloring of C. As
we can extend the coloring of the edges of M to all cycles of F , the resulting
(7, 2)-edge-coloring witnesses that the circular chromatic index of G does not
exceed 7/2.

Petersen’s theorem [11] asserts that every cubic bridgeless graph has a
perfect matching; this yields the next corollary of Theorem 4.

Corollary 5. The circular chromatic index of every cubic bridgeless graph

with girth 6 or more is at most 7/2.

Finally, we show that the assumption that the given graph is cubic can
be relaxed in Corollary 5.

Corollary 6. The circular chromatic index of every subcubic graph with odd-

girth 7 or more is at most 7/2.

Proof. Let G be a subcubic graph with odd-girth 7 or more that has a circular
chromatic index greater than 7/2 and that has the smallest number of vertices
among all such graphs. Consequently, the minimum degree of G is at least
2. Similarly, G is connected. The graph G is also bridgeless: otherwise, each
of the two graphs obtained from G by splitting along the bridge has a (7, 2)-
edge-coloring and these edge-colorings (after rotating the colors if necessary)
combine to a (7, 2)-edge-coloring of G.

If G has no vertices of degree 2, then G is a cubic bridgeless graph.
Petersen’s theorem [11] ensures that G has a a 2-factor F . By our assumption,
no cycle of F has length 3 or 5, and therefore G cannot be a counter-example
by Theorem 4. So, assume that G has at least one vertex of degree 2. Let
H be a 3-edge-connected cubic graph of odd-girth at least 7 from which we
remove an edge. We construct the graph G′ as follows. We take two disjoint
copies of G. For each pair (u, v) of corresponding vertices of degree 2 (one
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in each copy of G), we add a copy of H, join u to a vertex of degree 2 of H,
and v to the other vertex of degree 2 in H. The resulting graph G′ is cubic
and has odd-girth at least 7. Moreover, since G is bridgeless, G′ has at most
two bridges. More precisely, G′ has two bridges if and only if G has exactly
one vertex of degree 2, and G′ is bridgeless otherwise. Therefore, G′ has
a perfect matching by Tutte’s theorem [9, 12]. Consequently, since G′ has
odd-girth at least 7, Theorem 4 implies the existence of a (7, 2)-edge-coloring
of G′. This edge-coloring restricted to G yields a (7, 2)-edge-coloring of G, a
contradiction.
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