487 research outputs found

    Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study

    Get PDF
    It is well established that the ingestion of the omega-3 (N3) fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3) in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg) to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ) containing MicroN3 (450–550 mg EPA/DHA) during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE) plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P < 0.05) and a reduction in triacylglycerols (89.89 ± 12.8 vs. 80.78 ± 10.4 mg/dL; P < 0.05) accompanying the MicroN3 treatment that was significantly different from placebo (P < 0.05). In post study interviews, participants reported that the ingested food was well-tolerated, contained no fish taste, odor or gastrointestinal distress accompanying treatment. The use of MicroN3 foods provides a novel delivery system for the delivery of essential fatty acids. Our study demonstrates that MicroN3 foods promote the absorption of essential N3, demonstrate bioactivity within 2 weeks of ingestion and are well tolerated in young, active participants who are at low risk for cardiovascular disease

    Structural diversity in binary nanoparticle superlattices

    Full text link
    Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures - that is, 'bottom up' assembly - is a theme that runs through chemistry, biology and material science. Bacteria(1), macromolecules(2) and nanoparticles(3) can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)(3-7) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation(3,8,9), and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres(10,11). Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62551/1/nature04414.pd

    Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?

    Get PDF
    The Sundarbans, the largest mangrove ecosystem in the world, is under threat from historical and future human exploitation and sea level rise. Limited scientific knowledge on the spatial ecology of the mangroves in this world heritage ecosystem has been a major impediment to conservation efforts. Here, for the first time, we report on habitat suitability analyses and spatial density maps for the four most prominent mangrove species - Heritiera fomes, Excoecaria agallocha, Ceriops decandra and Xylocarpus mekongensis. Globally endangered H. fomes abundances declined as salinity increased. Responses to nutrients, elevation, and stem density varied between species. H. fomes and X. mekongensis preferred upstream habitats. E. agallocha and C. decandra preferred down-stream and mid-stream habitats. Historical harvesting had negative influences on H. fomes, C. decandra and X. mekongensis abundances. The established protected area network does not support the most suitable habitats of these threatened species. We therefore recommend a reconfiguration of the network to include these suitable habitats and ensure their immediate protection. These novel habitat insights and spatial predictions can form the basis for future forest studies and spatial conservation planning, and have implications for more effective conservation of the Sundarbans mangroves and the many other species that rely on them

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Visualization of Gli Activity in Craniofacial Tissues of Hedgehog-Pathway Reporter Transgenic Zebrafish

    Get PDF
    The Hedgehog (Hh)-signaling pathway plays a crucial role in the development and maintenance of multiple vertebrate and invertebrate organ systems. Gli transcription factors are regulated by Hh-signaling and act as downstream effectors of the pathway to activate Hh-target genes. Understanding the requirements for Hh-signaling in organisms can be gained by assessing Gli activity in a spatial and temporal fashion.We have generated a Gli-dependent (Gli-d) transgenic line, Tg(Gli-d:mCherry), that allows for rapid and simple detection of Hh-responding cell populations in both live and fixed zebrafish. This transgenic line expresses a mCherry reporter under the control of a Gli responsive promoter, which can be followed by using fluorescent microscopy and in situ hybridization. Expression of the mCherry transgene reporter during embryogenesis and early larval development faithfully replicated known expression domains of Hh-signaling in zebrafish, and abrogating Hh-signaling in transgenic fish resulted in the suppression of reporter expression. Moreover, ectopic shh expression in Tg(Glid:mCherry) fish led to increased transgene production. Using this transgenic line we investigated the nature of Hh-pathway response during early craniofacial development and determined that the neural crest skeletal precursors do not directly respond to Hh-signaling prior to 48 hours post fertilization, suggesting that earlier requirements for pathway activation in this population of facial skeleton precursors are indirect.We have determined that early Hh-signaling requirements in craniofacial development are indirect. We further demonstrate the Tg(Gli-d:mCherry) fish are a highly useful tool for studying Hh-signaling dependent processes during embryogenesis and larval stages

    Ecosystem development after mangrove wetland creation : plant–soil change across a 20-year chronosequence

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecosystems 15 (2012): 848-866, doi:10.1007/s10021-012-9551-1.Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses

    Autoimmunity to HSP60 during diet induced obesity in mice

    Get PDF
    Adaptive immunity has been implicated in adipose tissue inflammation, obesity and its adverse metabolic consequences. No obesity-related autoantigen has yet been identified, although heat shock protein 60 (HSP60) has been implicated in other autoimmune diseases. We investigated whether feeding a high-fat diet to C57BL/6J mice would cause autoimmunity to HSP60 and whether immunomodulation with peptides from HSP60 would reverse the resulting obesity or metabolic dysfunction. Obese mice had higher circulating levels of HSP60 associated with increased T-lymphocyte proliferation responses and the emergence of circulating IgG1 and IgG2c antibody levels against HSP60. Treatment with escalating doses of a mixture of three proven immunomodulatory HSP60 peptides did not reduce weight but completely reversed the increase in VLDL/LDL levels and partially reversed the glucose intolerance in obese mice. Obese mice mount an autoimmune response to HSP60, which partly underlies the resulting metabolic disturbances

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions
    corecore