135 research outputs found
Corresponding Functional Dynamics across the Hsp90 Chaperone Family: Insights from a Multiscale Analysis of MD Simulations
Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones
Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies
A set of software tools for building and distributing models of macromolecular assemblies uses an integrative structure modeling approach, which casts the building of models as a computational optimization problem where information is encoded into a scoring function used to evaluate candidate models
Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients
Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone
Cytosolic HSP90 requires multiple cochaperones in folding client proteins. However, the function of gp96 (HSP90b1, grp94), an HSP90 paralogue in the endoplasmic reticulum (ER), is believed to be independent of cochaperones. Here, we demonstrate that gp96 chaperones multiple Toll-like receptors (TLRs), but not TLR3, in a manner that is dependent on another ER luminal protein, CNPY3. gp96 directly interacts with CNPY3, and the complex dissociates in the presence of adenosine triphosphate (ATP). Genetic disruption of gp96–CNPY3 interaction completely abolishes their TLR chaperone function. Moreover, we demonstrate that TLR9 forms a multimolecular complex with gp96 and CNPY3, and the binding of TLR9 to either molecule requires the presence of the other. We suggest that CNPY3 interacts with the ATP-sensitive conformation of gp96 to promote substrate loading. Our study has thus established CNPY3 as a TLR-specific cochaperone for gp96
Outcomes of the “BRCA Quality Improvement Dissemination Program”: An Initiative to Improve Patient Receipt of Cancer Genetics Services at Five Health Systems
OBJECTIVE: A quality improvement initiative (QII) was conducted with five community-based health systems\u27 oncology care centers (sites A-E). The QII aimed to increase referrals, genetic counseling (GC), and germline genetic testing (GT) for patients with ovarian cancer (OC) and triple-negative breast cancer (TNBC).
METHODS: QII activities occurred at sites over several years, all concluding by December 2020. Medical records of patients with OC and TNBC were reviewed, and rates of referral, GC, and GT of patients diagnosed during the 2 years before the QII were compared to those diagnosed during the QII. Outcomes were analyzed using descriptive statistics, two-sample t-test, chi-squared/Fisher\u27s exact test, and logistic regression.
RESULTS: For patients with OC, improvement was observed in the rate of referral (from 70% to 79%), GC (from 44% to 61%), GT (from 54% to 62%) and decreased time from diagnosis to GC and GT. For patients with TNBC, increased rates of referral (from 90% to 92%), GC (from 68% to 72%) and GT (81% to 86%) were observed. Effective interventions streamlined GC scheduling and standardized referral processes.
CONCLUSION: A multi-year QII increased patient referral and uptake of recommended genetics services across five unique community-based oncology care settings
Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design
Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite
Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer
Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine “hot spots” involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a “conformational selection model” of the Hsp90 mechanism, whereby the protein may exist in a dynamic equilibrium between different conformational states available on the energy landscape and binding of a specific partner can bias the equilibrium toward functionally relevant complexes
- …