69 research outputs found
Identification of genes preferentially expressed in wheat egg cells and zygotes
Wheat genes differentially expressed in the egg cell before and after fertilization were identified. The data support zygotic gene activation before the first cell division in wheat. To have an insight into fertilization-induced gene expression, cDNA libraries have been prepared from isolated wheat egg cells and one-celled zygotes. Two-hundred and twenty-six egg cell and 253 zygote-expressed EST sequences were determined. Most of the represented transcripts were detected in the wheat egg cell or zygote transcriptome at the first time. Expression analysis of fourteen of the identified genes and three controls was carried out by real-time quantitative PCR. The preferential expression of all investigated genes in the female gametophyte-derived samples (egg cells, zygotes, two-celled proembryos, and basal ovule parts with synergids) in comparison to the anthers, and the leaves were verified. Three genes with putative signaling/regulatory functions were expressed at a low level in the egg cell but exhibited increased (2-to-33-fold) relative expression in the zygote and the proembryo. Genes with high EST abundance in cDNA libraries exhibited strong expression in the egg cell and the zygote, while the ones coding for unknown or hypothetical proteins exhibited differential expression patterns with preferential transcript accumulation in egg cells and/or zygotes. The obtained data support the activation of the zygotic genome before the first cell division in wheat
In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives
<p>Abstract</p> <p>Background</p> <p>Cellular reactions to alloplastic bone substitute materials (BSM) are a subject of interest in basic research. In regenerative dentistry, these bone grafting materials are routinely combined with enamel matrix derivatives (EMD) in order to additionally enhance tissue regeneration.</p> <p>Materials and methods</p> <p>The aim of this study was to evaluate the proliferative activity of human osteogenic cells after incubation over a period of seven days with commercial BSM of various origin and chemical composition. Special focus was placed on the potential additional benefit of EMD on cellular proliferation.</p> <p>Results</p> <p>Except for PerioGlas<sup>®</sup>, osteogenic cell proliferation was significantly promoted by the investigated BSM. The application of EMD alone also resulted in significantly increased cellular proliferation. However, a combination of BSM and EMD resulted in only a moderate additional enhancement of osteogenic cell proliferation.</p> <p>Conclusion</p> <p>The application of most BSM, as well as the exclusive application of EMD demonstrated a positive impact on the proliferation of human osteogenic cells <it>in vitro</it>. In order to increase the benefit from substrate combination (BSM + EMD), further studies on the interactions between BSM and EMD are needed.</p
The REST remodeling complex protects genomic integrity during embryonic neurogenesis
The timely transition from neural progenitor to post-mitotic neuron requires down-regulation and loss of the neuronal transcriptional repressor, REST. Here, we have used mice containing a gene trap in the Rest gene, eliminating transcription from all coding exons, to remove REST prematurely from neural progenitors. We find that catastrophic DNA damage occurs during S-phase of the cell cycle, with long-term consequences including abnormal chromosome separation, apoptosis, and smaller brains. Persistent effects are evident by latent appearance of proneural glioblastoma in adult mice deleted additionally for the tumor suppressor p53 protein (p53). A previous line of mice deleted for REST in progenitors by conventional gene targeting does not exhibit these phenotypes, likely due to a remaining C-terminal peptide that still binds chromatin and recruits co-repressors. Our results suggest that REST-mediated chromatin remodeling is required in neural progenitors for proper S-phase dynamics, as part of its well-established role in repressing neuronal genes until terminal differentiation
Cutaneous Innate Immune Sensing of Toll-like Receptor 2-6 Ligands Suppresses T Cell Immunity by Inducing Myeloid-Derived Suppressor Cells
SummarySkin is constantly exposed to bacteria and antigens, and cutaneous innate immune sensing orchestrates adaptive immune responses. In its absence, skin pathogens can expand, entering deeper tissues and leading to life-threatening infectious diseases. To characterize skin-driven immunity better, we applied living bacteria, defined lipopeptides, and antigens cutaneously. We found suppression of immune responses due to cutaneous infection with Gram-positive S. aureus, which was based on bacterial lipopeptides. Skin exposure to Toll-like receptor (TLR)2-6-binding lipopeptides, but not TLR2-1-binding lipopeptides, potently suppressed immune responses through induction of Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs). Investigating human atopic dermatitis, in which Gram-positive bacteria accumulate, we detected high MDSC amounts in blood and skin. TLR2 activation in skin resident cells triggered interleukin-6 (IL-6), which induced suppressive MDSCs, which are then recruited to the skin suppressing T cell-mediated recall responses such as dermatitis. Thus, cutaneous bacteria can negatively regulate skin-driven immune responses by inducing MDSCs via TLR2-6 activation
- …