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Abstract

Background: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases
that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of
animal wastes, and thus live in intimate association with many animal pathogens.

Results: We have sequenced and analyzed the genome of the house fly using DNA from female flies. The
sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of
shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial
increases in copy number and diversity of both the recognition and effector components of the immune system,
consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica,
representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification
in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors
and odorant binding proteins, many associated with gustation.

Conclusions: This represents the first genome sequence of an insect that lives in intimate association with abundant
animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect
control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and
for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group
to Drosophila in comparative genomic studies.
Background
House flies, Musca domestica L. (Diptera: Muscidae), are
ubiquitous and transmit more than 100 human and ani-
mal diseases [1-3], including bacterial infections such as
salmonellosis, anthrax, ophthalmia, shigellosis, typhoid
fever, tuberculosis, cholera and infantile diarrhea; proto-
zoan infections such as amebic dysentery; helminthic
infections such as pinworms, roundworms, hookworms
and tapeworms; as well as viral and rickettsial infections.
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House flies can spread a deadly strain of Escherichia coli
[4] and transmit life threatening antibiotic-resistant bac-
teria [5,6], which constitute an ever increasing threat in
hospitals and other healthcare facilities [7-10]. Flies also
transmit pathogens responsible for eye diseases such as
trachoma and epidemic conjunctivitis, and infect wounds
or skin with diseases such as cutaneous diphtheria, myco-
ses, yaws and leprosy [2]. Fly-transmitted trachoma alone
causes 6 million cases of childhood blindness each year
[11]. The mobility of house flies, their regular contact with
excreta, carcasses, garbage and other septic matter, and in-
timate association with animal pathogens and humans all
contribute to their roles in transmission of these diseases
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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Table 1 House fly genome assembly scaffold length
distribution

Scaffold length Scaffold count

>1 Mb 35

250 kb to 1 Mb 604

100 to 250 kb 1,082

10 to 100 kb 4,640

5 to 10 kb 2,584

2 to 5 kb 6,000

<2 kb 5,542

Scott et al. Genome Biology 2014, 15:466 Page 2 of 16
http://genomebiology.com/2014/15/10/466
[1,2]. House fly larvae play a vital role in ecosystems as
decomposers of animal wastes. This represents a unique
niche, relative to other insects that have had their ge-
nomes sequenced.
House flies are always found in association with

humans and human activities, following the spread of
Homo sapiens across the planet [12]. They are also one
of the most serious pests at animal production facilities
worldwide. Insecticides have been used extensively for
controlling house flies for a century and this pest has
shown a remarkable ability to rapidly evolve resistance.
This led to house flies being one of the primary insects
used for studies on insecticide resistance and toxicology.
The house fly has been a model system for studies of

insect olfaction [13,14] and (Z)-9-tricosene plays an im-
portant role in inter-sex communication and mate selec-
tion in house flies. New attractants would be valuable
for baits in management systems [15,16] and could lead
to a reduction in insecticide use for house fly control.
Nasonia vitripennis is a parasitoid of the house fly

(Nasonia is sold commercially for fly control) and the
Nasonia genome has been sequenced [17]. Having the
genome of both the parasitoid (Nasonia) and the host
(M. domestica) will allow unprecedented insights into the
molecular mechanisms of host-parasitoid interaction.
The Diptera clade has radiated into over 120,000 known

species since its origin in the late Jurassic. M. domestica is
well placed within the Diptera to maximize the utility of
sequence data for comparison between existing dipteran
genomes [18]. Multiple, deeply divergent comparisons
within the order allow identification of lineage effects
on rates and patterns of genomic diversity. These com-
parisons become more powerful in elucidating genome
evolution as the phylogenetic context is broadened.
Given the well centered position between Drosophila
and mosquitoes, the Musca genome is nearly ideal for
leveraging analysis and annotation of the mosquito ge-
nomes [18].
M. domestica has a well described linkage map for the

five autosomes (I to V) and two sex chromosomes (X and
Y) [19-23]. In the house fly, male sex is determined by a
dominant factor, M, which is located on the Y chromo-
some in 'standard' populations. Thus, males are XYM and
females are XX [24,25]. This is believed to be the ancestral
state of sex determination in house flies [26,27]. However,
M can be located on one or more of the five autosomes
[28-34] or even rarely on X [26,35]. The former M factors
are referred to as 'autosomal M' and both males and fe-
males in carrier populations typically have the XX geno-
type [24,26,29,36]. Autosomal M factors act similarly to Y
chromosome M factors in determining maleness, by pro-
hibiting the female specific splicing of the transformer
(Md-tra, previously F) primary transcript [28,35]. In auto-
somal M populations from different continents, especially
those having males with multiple M factors, a Md-tra vari-
ant was found, Md-traD (previously FD), which acts as a
dominant female determiner. It allows females to be pro-
duced even in the presence of multiple copies of M (or a
homozygous M) and effectively makes females the hetero-
gametic sex (M/M; Md-traD/Md-tra+), and males the
homogametic sex (M/M; Md-tra+/ Md-tra+) [28,34]. The
genome sequence will accelerate progress in understand-
ing many of these and other aspects of house fly biology.

Results and discussion
Sequencing and assembly
Genomic DNA of a pool of six adult female flies was se-
quenced and assembled to a size of 0.691 Gb, compris-
ing 20,487 scaffolds (N50 contig, 12 kb; N50 scaffold,
226 kb). Scaffolds ranged in length up to a maximum of
2.29 Mb (Table 1). This genome size of 0.691 Gb is 81%
of the size estimated using kmer frequency plus depth of
coverage calculations, 75% of the size determined spectro-
photometrically [37] and 200% of the size estimated using
quantitative PCR [38], respectively. More than half (52%)
of the M. domestica genome is composed of interspersed
repeats, suggesting a novel genome evolution trajectory
compared with Drosophila melanogaster (Additional file 1).
A majority of these repeat elements (representing 25% of
the genome) are those that transpose by DNA excision
and repair, class II or DNA transposons. Using the NCBI
annotation pipeline and RNA-seq transcript evidence, we
predicted a total of 14,180 protein-coding genes and 1,165
non-coding genes (Table 2). Alignment of 550M. domes-
tica transcripts (GenBank) to the assembly showed that
95% align over at least 90% of their length, and of 248
aligned universal single copy orthologs (CEGMA), 98%
were complete, suggesting that the assembly has captured
most of the protein-coding genes in the genome. A
measure of aggregate transcript coverage by alignment
of whole body and larva RNA-seq data to our M. domes-
tica reference was 66%. This measure of transcript
coverage varies (66 to 94%) among insect genomes as a
result of assembly contiguity, dictated by repeat com-
position (Additional file 2). The average protein identity



Table 2 Genic characteristics of the house fly genome

Feature Count Mean length

Genes 15,345 13,553

Transcripts 18,779 2,097

mRNA 17,508 2,221

tRNA 947 74

Single exon transcripts 2,566 797

Exons 67,886 431

Introns 52,875 3,889
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in comparison to D. melanogaster (RefSeq) was 64%. In
addition to the RNA-seq data generated in our study,
we also compared the M. domestica genome with a pre-
viously published transcriptome of M. domestica [39].
Of the 6,159 transcripts previously reported, 6,053 had
matches in the ab initio predicted genes in M. domes-
tica when compared using BLASTn [40]. The average
percent identity was 98.7 ± 0.02% and ranged from 75.2
to 100%, identical to the ab initio predicted gene set
(Additional file 3). The remaining 106 transcripts pre-
viously reported [39] were further compared with the
genome using Exonerate [41] and had, on average,
97.6 ± 0.9% identity, ranging from 38.6 to 100% identi-
cal (Additional file 3).
We grouped the 14,180 predicted protein-coding genes

in M. domestica into 10,427 orthologous groups based on
homology to D. melanogaster. Each orthologous group
contains at least one M. domestica protein, and can be
assigned to one of three categories: single copy ortholog,
for groups that contain a single M. domestica protein and
a single D. melanogaster protein, conserved paralog, for
groups that contain both M. domestica and D. melanoga-
ster proteins, but are not single copy in both species, and
lineage-restricted, for groups that contain only M. domes-
tica proteins. Of the 14,180 predicted protein-coding
genes, 7,006 (49%) are single copy orthologs of D. melano-
gaster proteins, 5,240 (37%) are in conserved paralogous
groups (mean size in M. domestica: 2.88 proteins), and the
remaining 1,934 (14%) are lineage-restricted and lack
homologs in D. melanogaster.

Gene ontology
The most abundant Gene Ontology (GO) biological pro-
cesses represented by house fly genes were single-organism
process (12.1%), cellular process (12.0%), metabolic process
(11.1%) and biological regulation (10.8%; Figure S1A in
Additional file 4). The most abundant cellular compo-
nents were cell (32.6%) and organelle (29.2%; Figure S1B
in Additional file 4). The most abundant molecular pro-
cesses were binding (48.1%) and catalytic activity (28.9%;
Figure S1C in Additional file 4). Overall, the distribution
of genes within GO classifications was very similar between
M. domestica and D. melanogaster (Additional file 5).
Within the biological processes classification, the most
notable difference was the more than two-fold greater per-
centage of genes in M. domestica associated with 'growth'.
Within the cellular components classification M. domes-
tica had an approximately two-fold greater percentage of
genes in the 'membrane', and 'membrane-enclosed lumen'
categories (relative to D. melanogaster). M. domestica also
had a lower percentage of genes in the 'cell' category, rela-
tive to D. melanogaster. There were no remarkable differ-
ences between M. domestica and D. melanogaster in the
percentage of genes in the molecular functions categories
(Additional file 5).

Immune-related genes
We identified 771 putative immune-related genes in the
house fly, of which 416 have direct homology (see Materials
and methods) to known or putative D. melanogaster
immune-related proteins, and the remaining 355 are
identified based on hidden Markov model (HMM)
queries. As in other insects, these genes encode pro-
teins with several functions: recognition proteins that
identify pathogen-associated molecular patterns, pro-
teins that belong to signaling pathways that activate
the transcriptional response to infection, and effector
molecules that kill pathogens.
Previous work, primarily in Drosophila, has identified

four primary signaling pathways involved in the systemic
transcriptional response to bacterial and fungal infection:
the Toll, imd, JAK/STAT, and JNK pathways [42,43]. The
M. domestica genome possess the full complement of
signal transduction or signal modulation components of
these pathways, and the vast majority are conserved as
single copy orthologs between M. domestica and D. mela-
nogaster. It appears likely, therefore, that immune signaling
inM. domestica is substantially similar to immune signaling
in D. melanogaster.
In contrast to the signaling pathways, both recognition

and effector components of the immune system show
substantial increases in copy number and genic diversity
in M. domestica compared with D. melanogaster, suggest-
ing the possibility that M. domestica possesses a more ro-
bust immune response to diverse pathogens encountered
in the pathogen-rich environment in which it lives. In
other insects, a variety of cell-surface and secreted pro-
teins involved in recognition of pathogens have been iden-
tified, including peptidoglycan recognition proteins and
beta-glucan binding proteins (also known as GNBPs in
Drosophila), which are upstream of the main signaling
pathways [44], and a variety of receptors likely involved in
phagocytosis, including Nimrods, thioester-containing
proteins (Teps) and scavenger receptors [45,46]. Of these,
there are striking expansions in copy number of Nimrods



Scott et al. Genome Biology 2014, 15:466 Page 4 of 16
http://genomebiology.com/2014/15/10/466
and Teps in particular. The Nimrod gene family is one of
the more variable in copy number among the sequenced
Drosophila species [47], a trend that is continued in
the more divergent comparison to M. domestica (17
Nim-containing proteins in M. domestica and 11 in D.
melanogaster; only 8.7% of gene families have a greater
degree of expansion in M. domestica). Even more strik-
ing is the expansion of the Tep family (Figure 1), which
has 19 members in M. domestica and only 6 in D. melano-
gaster. The Tep1/2 gene family specifically has expanded
dramatically in M. domestica: this family has 2 members
in D. melanogaster but 16 members in M. domestica,
which is the 15th largest species-specific expansion in the
M. domestica genome (Additional file 1). In addition, the
M. domestica genome contains three lineage-specific
genes that encode proteins with Tep-like domains (identi-
fied by HMM), but which are not clearly homologous to
any characterized D. melanogaster Teps.
Figure 1 Tep phylogeny. Maximum likelihood amino acid phylogeny of D.
labeled Tep1 to Tep5. M. domestica Teps are labeled XP_NNNNNNNNN and a
are indicated with a bar. Branch support is the SH-like statistic estimated in ph
In M. domestica, similar to recognition proteins, the ef-
fector molecule repertoire is also significantly expanded.
M. domestica shares four antimicrobial families with D.
melanogaster, the attacins, diptericins, cecropins, and
defensins (D. melanogaster also possesses one drosocin,
one metchnikowin, and seven drosomycins that are not
identifiable in the M. domestica genome), three of which
have expanded relative to D. melanogaster (10 attacins
in M. domestica, 4 in D. melanogaster; 12 cecropins in
M. domestica, 5 in D. melanogaster (including andro-
pin); 5 defensins in M. domestica, 1 in D. melanogaster;
2 diptericins in M. domestica, 2 in D. melanogaster).
Even including the 9 antimicrobial peptides in Drosophila-
specific families, M. domestica has a significantly enlarged
antimicrobial peptide (AMP) repertoire (29 versus 19).
AMP gene families are known to evolve very rapidly [48],
and it is likely that novel effectors remain to be discovered
in M. domestica (as in mosquitos [49], bees [50], and
melanogaster and M. domestica Teps. D. melanogaster proteins are
re shown in italics. For both species, multiple isoforms of the same gene
yml. The tree is rooted so as to minimize the number of duplications.
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wasps [51,52]), further increasing the potential diversity of
the house fly AMP response.

Metabolism/detoxification genes
Three groups of enzymes are commonly associated with
detoxification of xenobiotics (although they have other
functions as well [53]): cytochrome P450s, esterases/
hydrolases, and conjugation enzymes. The largest group
in M. domestica is the cytochrome P450s, for which a
total of 146 genes plus 11 pseudogenes were identified
(Additional file 6). This represents a significant expan-
sion of P450s relative to D. melanogaster, which has 86
[54], and relative to Glossina morsitans, which has 72
(Additional file 7). Most of the predicted cytochrome
P450 genes (135 genes) were full length while 11 genes
were incomplete, or were contained within multiple
predicted transcripts, six of which, CYP6A56, CYP6GV1,
CYP6A36, CYP304A2, CYP310B2, and CYP313D1, had
partial sequences either due to low sequence coverage
Figure 2 Neighbor-joining tree showing the phylogenetic analysis of
relation to CYP genes from D. melanogaster (DM, green). Clustal W wa
to compute the tree. The tree was rooted with human CYP51 as an out-gr
Sequences for the cytochrome P450 genes and the gene names were take
or because the predicted gene spanned the edge of a
supercontig (Additional file 8). One cytochrome P450
gene, CYP4D68, was predicted to have an alternative
amino terminus (XM_005190900) upstream of the main
cytochrome P450 predicted gene locus (XM_005190901),
and four other P450s genes (CYP4D3, CYP4D4, CYP4D58,
CYP4AC6) may have alternative splicing isoforms as well
(Additional file 8). The remaining four cytochrome P450
genes, CYP6A6, CYP6A58, CYP6D1, and CYP4D64, were
represented by more than one predicted transcript that ei-
ther spanned the edges of different supercontigs or were
positioned proximal to each other within the genome
(Additional file 8). The expansion of cytochrome P450
genes in M. domestica was predominantly present within
clans 3 and 4, which had 65 and 55 genes, respectively
(Figure 2). The most predominant P450 families in M.
domestica were CYP6 and CYP4, which contained 46 and
43 genes, respectively, and represented >60% of all cyto-
chrome P450s in the M. domestica genome. This is a
cytochrome P450 (CYP) genes of M. domestica (MD, red) in
s used to perform multiple sequence alignment and Phylip was used
oup. The four insect CYP clades are shown in different colors.
n from the DR Nelson P450 homepage [59].
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similar percentage to what is present in the D. melanoga-
ster genome, in which the genes in the CYP6 and CYP4
families account for 50% of the total cytochrome P450
genes in the genome [55]. The Halloween genes, CYP306A1
(phantom), CYP302A1 (disembodied), CYP307A2 (spookier),
CYP315A1 (shadow), and CYP314A1 (shade), were identified
[56], along with CYP18A1, which is involved in the inacti-
vation of 20-hydroxyecdysone [57], and CYP301A1, which
has recently been shown to be important for cuticle forma-
tion [58]. Taken together, the complement of cytochrome
P450 genes identified in the M. domestica genome consist
of those anticipated to be present, along with a predomin-
ance of cytochrome P450 genes from the CYP6 and CYP4
families as seen in D. melanogaster.
A total of 33 glutathione S-transferase (GST) genes

and 3 splice variants were predicted from the M. domes-
tica genome (Additional file 9). This is similar to the num-
ber present in D. melanogaster, which has 36 GST genes
and 11 splice variants [60]. An unrooted phylogenetic ana-
lysis of the GSTs for M. domestica and D. melanogaster
showed that the M. domestica GST genes were distributed
among the different classes of cytosolic GSTs present in
the D. melanogaster genome: epsilon, omega, theta, sigma,
and zeta (Additional file 10). An additional four micro-
somal GST genes were predicted from the M. domestica
genome, which is similar to the number of microsomal
GST genes present in D. melanogaster (three genes with a
total of four isoforms).
In the M. domestica genome, a total of 92 genes were

predicted to have esterase activities, including phospho-
diesterase, acetylcholinesterase, thioesterase, carboxyles-
terase, metallophosphoesterase, neuropathy target esterase
and palmitoyl-protein thioesterase (Additional file 5). Based
on the chemical reactions they catalyze, these enzymes
were divided into four categories, containing a total of
39 carboxylic-ester hydrolases (EC 3.1.1), 10 thioester
hydrolases (EC 3.1.2), three phosphoric-monoester hy-
drolases (EC 3.1.3) and 40 phosphoric-diester hydro-
lases (EC 3.1.4) [61].

Cys-loop ligand-gated ion channels
Members of the cys-loop ligand-gated ion channel
(cysLGIC) superfamily mediate fast synaptic transmission
in insects. They play key roles in behavior, such as escape
responses [62], olfactory learning and memory [63], as
well as regulating sleep [64]. CysLGICs consist of five
homologous subunits arranged around a central ion
channel [65]. Analysis of the M. domestica genome has
revealed 23 subunit-encoding genes, which is the same
complement of genes found in D. melanogaster [66]
(Figure 3). Ten of these genes encode putative nicotinic
acetylcholine receptor (nAChR) subunits, which consist
of a core group of subunit-encoding genes (α1 to α7 and
β1 to β2) [67] that are highly conserved between insect
species, four of which (α2, α5, α6 and β3) have been char-
acterized from M. domestica [68-70]. The M. domestica
genome also contains a single divergent subunit (β3) that
is less well conserved [70]. For nAChRs, α subunits are
traditionally defined by the presence of two vicinal cyst-
eine residues important for interactions with acetylcho-
line, while β subunits lack this motif [71]. The putative M.
domestica ortholog of Dβ2 is a non-α subunit (Mdomβ2;
Figure 3), which is unusual considering that the orthologs
of Dβ2 in other insect species possess the cysteine doublet
and thus are α subunits, including Agamα8 from another
member of the Diptera, the mosquito Anopheles gambiae
[72]. The amino acid sequences and accession numbers
for the cysLGICs are provided in Additional file 11.
The house fly cysLGIC superfamily also includes Rdl

[73], GRD and LCCH3, which form ion channels gated
by γ-aminobutyric acid (GABA) [74], a glutamate-gated
chloride channel (GluCl) [73], two histamine-gated
chloride channels (HisCl1 and HisCl2) [75], and a pH-
sensitive chloride channel (Figure 3) [76]. The remaining
cysLGICs have yet to be functionally characterized. M.
domestica is the only other insect reported to possess a
putative ortholog of D. melanogaster cysLGIC, NtR. Insect
cysLGICs are of importance as they are targets of widely
used insecticides [77], such as phenylpyrazoles (which act
on GABA receptors and GluCls), spinosyns and neonico-
tinoids (which act on nAChRs). The cysLGIC sequence
information from diverse species, including agricultural
pests, disease vectors and pollinating insects [78-80],
provides a valuable starting point for understanding
the interactions of insecticides with their targets at the
molecular level, as well as enhancing our understand-
ing of mechanisms causing insecticide resistance, and
may prove instructive in the future design and devel-
opment of improved insecticides with enhanced speci-
ficity for pest species.

Chemoreceptors
The olfactory and gustatory abilities of insects depend on
many chemoreceptors and associated proteins encoded by
at least four major gene families [81]. The odorant binding
proteins (OBPs) are small, globular, secreted proteins that
transport hydrophobic odorants to the receptors in sen-
sory neuron membranes within sensory sensilla, primarily
on the antennae, but also on the maxillary palps and other
chemosensory organs [82]. The odorant receptors (ORs)
are a relatively recently evolved family within the insect
chemosensory superfamily of ligand-gated ion channels
that mediate much of olfaction in insects [83]. The gusta-
tory receptors (GRs) mediate much of gustation, especially
perception of sugars and bitter tasting compounds, but as
the basal family of highly divergent receptors within the
superfamily, also mediate some aspects of olfaction, such
as perception of carbon dioxide [84]. The ionotropic



Figure 3 Phylogeny showing relationships of M. domestica and D. melanogaster cysLGIC protein sequences. Anopheles gambiae
sequences were also included when comparing nAChR sequences. Numbers at each node signify bootstrap values with 100 replicates and the
scale bar represents substitutions per site. Genbank ccession numbers for sequences shown in the tree are: A. gambiae Agamα1 (AY705394),
Agamα2 (AY705395), Agamα3 (AY705396), Agam α4 (AY705397), Agamα5 (AY705399), Agamα6 (AY705400), Agamα7 (AY705402), Agamα8
(AY705403), Agamαβ9α (AY705404) and Agamβ1 (AY705405); D. melanogaster Dα1 (CAA30172), Dα2 (CAA36517), Dα3 (CAA75688), Dα4
(CAB77445), Dα5 (AAM13390), Dα6 (AAM13392), Dα7 (AAK67257), Dβ1 (CAA27641), Dβ2 (CAA39211), Dβ3 (CAC48166), GluCl (AAG40735), GRD
(Q24352), HisCl1 (AAL74413), HisCl2 (AAL74414), LCCH3 (AAB27090), the putative cysLGIC subunit Ntr (AF045471), pHCl (NP_001034025), RDL
(AAA28556), CG6927 (AAF45992), CG7589 (AAF49337), CG8916 (BT022901), CG11340 (AAF57144), CG12344 (AAF58743); M. domestica Mdomα2
(DQ372062), Mdomα5 (EF203213), Mdomα6 (DQ498130), Mdomβ3 (EF203220), MdomRDL (Q75NA5), MdomGluCl (BAD16657). GABA,
γ-aminobutyric acid.
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receptors (IRs) are a greatly expanded and divergent
family of chemoreceptors that evolved from the ionotro-
pic glutamate receptor superfamily in basal animals, and
while some function in olfaction, many are involved in
gustation [85].
As the obvious comparison for the M. domestica rep-

ertoire, D. melanogaster has 52 genes encoding OBPs
[86], 60 genes encoding 62 ORs and 60 genes encoding
68 GRs via alternative splicing of some loci [87], and 65
genes encoding IRs [85]. We find that the M. domestica
genome encodes at least 87 OBPs, has 85 genes encod-
ing 86 ORs, 79 genes encoding 103 GRs, and 110 IRs
(Additional files 12, 13, 14, 15, and 16). Detailed exam-
ination of the relationships of these gene families in
these two flies (Additional files 17, 18, 19, and 20) re-
veals the expected patterns of birth-and-death gene
family evolution typical of environmentally relevant
genes. As expected, M. domestica shares the highly con-
served members of these families, such as the OrCo
protein that functions with each specific OR to make a
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functional olfactory receptor, and the apparently equiva-
lent IR8a/25a proteins, along with the conserved suites
of sugar and carbon dioxide receptors, and some highly
conserved bitter taste receptors. In general, however,
while there are roughly equal numbers of gene losses
and pseudogenes in each species, M. domestica has dupli-
cated and retained more genes in each family. These gene
subfamily expansions are particularly prominent in the
candidate gustatory receptors, especially those implicated
in perception of bitter tasting compounds. For example,
M. domestica has a large, mostly tandem array of 26
genes, one of which is alternatively spliced to encode 11
receptors, that are related to 8 D. melanogaster GRs impli-
cated in bitter taste that are now spread around that gen-
ome. The expansions in the IR family are also primarily in
receptors implicated in gustation. M. domestica also has
large expansions of ORs related to Or45a and Or67d in D.
melanogaster, receptors involved in repulsion from aver-
sive chemicals in larvae and in perception of a male-
produced pheromone, respectively.
In summary, M. domestica has evolved an expanded

repertoire of chemoreceptors and associated proteins
compared with D. melanogaster. This expansion is mostly
associated with gustation, specifically perception of bitter
tasting compounds. It may be that the more diverse and
potentially toxic food sources and larval habitats of M.
domestica have led to retention and specialization of gene
duplicates in these receptor gene subfamilies. Unfortu-
nately, the ligand specificity of most candidate bitter taste
receptors in Drosophila have proven difficult to resolve, so
it is not yet possible to infer likely ligands for these novel
receptors in M. domestica.

Sex determination, sex-biased gene expression and the
evolution of sex-biased genes
The dominant female determining Md-traD (Genbank
accession GU070694) allele sampled from a Japanese
Figure 4 Molecular lesions in Md-traD alleles of different populations.
included in male Md-tra transcripts and cause premature termination of trans
females these exon sequences are skipped, giving rise to transcripts with
sequence variations are indicated by arrows and further details are describ
population contains four small deletions and a small
insertion in the alternatively spliced sequences and one
non-synonymous substitution in the coding region
[88]. We sequenced Md-traD alleles of 22 to 24 indi-
viduals from 7 populations sampled across Europe,
North America, Asia, Africa and Australia and found
Md-traD alleles on all continents. Surprisingly, we de-
tected exactly the same molecular signatures in Md-traD

alleles of all populations tested (Figure 4), but different al-
leles for the non-dominant form, containing insertions or
deletions in exon 3. Further studies will be necessary to
elucidate the cause for its rapid global dispersion and fix-
ation in autosomal populations. Availability of the genome
sequence will facilitate such studies; particularly scans of
the Md-tra locus can be conducted to look for more
variants.
Genes with sexually dimorphic (sex-biased) expression,

much like other sexually dimorphic traits, tend to evolve
faster than genes with equal (unbiased) expression in
males and females [89,90]. Among genes with sex-biased
expression, genes expressed in reproductive tissues evolve
fastest, particularly those expressed primarily in male-
limited organs [91]. The faster evolution of genes with
sex-biased expression is likely driven by a combination of
positive Darwinian selection and relaxed purifying selec-
tion [89,92]. Genes with higher expression in males (male-
biased) are also more likely than unbiased genes to not
have identifiable homologs in comparisons between Dros-
ophila species [89,93], suggesting that genes with male-
biased functions are more dispensable or that their protein
coding sequences evolve too fast for homolog identifica-
tion [92].
We used RNA-seq to measure gene expression levels in

whole male and female adult flies, and we identified genes
with male- or female-biased expression (Additional file 21).
Out of 10,096 genes with sufficiently high expression to
allow a test contrasting the sexes, 113 have male-biased
Schematic organization of exons in Md-tra. Exon 2b and/or exon 3 are
lation due to the presence of in-frame translational termination signals. In
an intact open reading frame. The positions of the reported Md-traD

ed in the boxes below [88].
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expression and 81 have female-biased expression (Table 3).
There are no significant differences in GO categories be-
tween male-biased, female-biased, and unbiased genes, al-
though this analysis is likely limited by small sample sizes.
In Drosophila whole bodies, approximately 10 to 20% of
genes have sex-biased expression [93,94], which is an
order of magnitude greater than what we observe in house
fly. Drosophila gonads and other reproductive organs
make up a substantial portion of adult body mass [95,96],
whereas house fly reproductive organs (especially in
males) are relatively smaller [97]. Because sex-biased ex-
pression in whole bodies is driven primarily by genes that
are differentially expressed between male and female re-
productive tissues [98], the lower frequency of genes with
sex-biased expression in house fly whole bodies could be
the result of smaller reproductive organs and/or less se-
vere sexual conflict. Alternatively, we may have less power
to detect sex-biased expression in house fly due to low
replication or noisy data.
To test the hypothesis that genes with sex-biased ex-

pression experience more evolutionary turnover than un-
biased genes, we used the ortholog calls described above
to divide house fly genes into those with at least one D.
melanogaster homolog (conserved) and those that are
lineage-specific. Not all M. domestica genes tested for sex-
biased expression were included in the test of homologous
genes in D. melanogaster (and vice versa), because of how
the data were handled. House fly genes with sex-biased
expression are less likely to be conserved than genes with
unbiased expression (P < 0.01, Fisher’s exact test (FET))
(Table 3). Genes with male-biased expression are less
likely to be conserved than unbiased genes (P < 0.005,
FET), whereas female-biased genes are as conserved as
unbiased genes (P = 0.729, FET) (Table 3). While male-
biased house fly genes have a lower frequency of hom-
ology matches to D. melanogaster than female-biased
genes, this difference is not significant (P = 0.091, FET).
These results support the hypothesis that genes with
male-biased expression are gained/lost from the genome
at a faster rate than other genes, and/or that genes with
male-biased expression have faster evolving protein-
coding sequences that evade homology detection.
We next calculated amino acid sequence identity between

house fly and D. melanogaster for genes that are single-
copy orthologs to determine whether genes with sex-biased
Table 3 Sex-biased expression of house fly genes and
homology with D. melanogaster genes

Sex-bias Conserved Lineage-specific Frequency conserved

Male-biased 88 25 0.779

Female-biased 71 10 0.877

Unbiased 8,478 1,104 0.884
expression experience elevated rates of evolution (Figure 5).
Genes with male-biased expression are more divergent
than both female-biased (P < 0.005, Mann–Whitney
(MW) test) and unbiased (P < 10−6, MW test) genes.
There is not a significant difference in evolutionary di-
vergence between female-biased and unbiased genes
(P = 0.280, MW test). These results suggest that at least
some of the lineage-specific house fly male-biased
genes are the result of genes with male-biased expres-
sion evading homology detection because of their fas-
ter evolving protein-coding sequences.
We further divided house fly genes with D. melanoga-

ster homologs into those that were duplicated specifically
in the house fly lineage (remaining single-copy in D. mela-
nogaster) and those that are one-to-one homologs with D.
melanogaster genes (Table 4). Duplicated genes are more
likely to have male-biased expression than single-copy
genes (P < 0.005, FET), consistent with what has been ob-
served in D. melanogaster [99]. Unlike the pattern in D.
melanogaster, house fly duplicated genes are also more
likely to have female-biased expression than single-copy
genes (P < 0.05, FET). In general, house fly duplicated
genes are more likely to have sex-biased expression than
single-copy genes (P < 0.0005, FET), and there is no differ-
ence in duplication frequency between male- and female-
biased genes (P = 0.665, FET). These results suggest that
gene duplication is a mechanism for generating both
male- and female-biased expression in house fly, which
differs from the observation in Drosophila [99].
Figure 5 Evolutionary divergence of sex-biased genes. Boxplots
show the amino acid sequence identity between M. domestica and
D. melanogaster single copy orthologs for genes with female-biased,
male-biased, and unbiased expression in house fly.



Table 4 Sex-biased expression of house fly genes and
duplication status

Sex-bias Duplicated Single-copy Frequency duplicated

Male-biased 17 42 0.288

Female-biased 12 39 0.235

Unbiased 832 5,782 0.126
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Actin
Five actin genes were found in house fly (LOC1019
01018, LOC101887443, LOC101890414, LOC101895248,
LOC101888968), one less than found in D. melanogaster.
The sequences were highly similar at the amino acid level
(95.5 to 99.5%; Martinez-NW pairwise alignments) and
the nucleotide level (84.4 to 96.8%). Like D. melanogaster
each sequence was 1,131 nucleotides in length. The high
degree of similarity between these genes suggests that the
use of one of these genes as an internal standard for quan-
titative PCR should be carefully scrutinized to avoid detec-
tion of multiple actin genes. The deduced amino acid
sequences of LOC101888968 and LOC101895248 were
100% identical to D. melanogaster actin 5c and 88 F, re-
spectively. Other orthologs could not be unambiguously
identified.

MicroRNA and microRNA machinery
After mapping all of the miRbase sequences against the
M. domestica genome, a total of 69 microRNAs (miR-
NAs) along with their hairpin precursors were predicted
to be present in the M. domestica genome (Additional
file 22). Seven miRNAs had two copies and two had
three copies, making a total of at least 81 miRNA loci in
the M. domestica genome. Within the multiple copy
miRNAs, two miRNAs, miR-1-5p and miR-996-5p, had
the same hairpin precursors, but were located in two
distinct locations of the genome, suggesting a duplica-
tion event. In addition to the predicted miRNA, 25 iso-
forms of 11 genes were predicted to be involved in the
transporting, processing and function of miRNAs, so-
called miRNA machinery [100] (Additional file 23).
These genes include Drosha, DGCR (partner of Drosha),
ran-like GTPase, exportin-5, Dicer, multiple argonaute
proteins, including one ago-1-like gene with four iso-
forms, two ago-2-like genes, one with two isoforms and
another ago-2-like gene with five isoforms, and one ago-3-
like gene, and two RISC-loading genes. Similar to other
dipteran species, no sid-1 homolog, which is involved in
systemic miRNA, was identified in the M. domestica gen-
ome [101]. However, multiple genes putatively involved in
the uptake of exogenous double-stranded RNA were iden-
tified; including two eater genes, and one nibbler gene
(Additional file 23). Although the biological function of
these miRNAs are currently unknown, the availability of
bioinformatics information will provide a valuable tool for
future studies targeting on the gene regulation in physio-
logical processes [102] of house flies.

Conclusions
We have sequenced and analyzed the genome of the
M. domestica using DNA from female flies. This represents
the first genome sequence of an insect that lives in intimate
association with abundant animal pathogens. The sequenced
genome size is 691 Mb and contains 15,345 genes. Com-
pared with D. melanogaster, the genome contains a rich
resource of shared and novel protein coding genes and a
significantly higher amount of repetitive elements.
In comparison to D. melanogaster, the house fly genome

has a larger number of genes associated with immune
response, detoxification and chemosensation. Relative to D.
melanogaster there are substantial increases in copy number
and diversity of both the recognition and effector compo-
nents of the immune system in the house fly genome, con-
sistent with life in a pathogen-rich environment. For
detoxification genes, there are 146 P450 genes (plus 11
pseudogenes) in M. domestica, representing a significant in-
crease relative to D. melanogaster (or G. morsitans) and sug-
gesting the presence of enhanced detoxification capacity in
house flies. Relative to D. melanogaster, M. domestica has
also evolved an expanded repertoire of chemoreceptors and
odorant binding proteins, many associated with gustation.
The availability of the house fly genome should accel-

erate the pace of research on this important vector of
human and animal diseases. The house fly genome pro-
vides a rich resource for enabling work on innovative
methods of insect control, for understanding the mecha-
nisms of insecticide resistance, genetic adaptation to
high pathogen loads, host parasitoid interactions, and
for exploring the basic biology of this important pest.
The genome of this species will also serve as a close out-
group to G. morsitans in comparative genomic studies.

Materials and methods
Genome and transcriptomes
DNA was extracted [103] from individual unmated adult
females of the M. domestica aabys strain [104] and used
for genome sequencing. The aabys strain was selected
because it was inbred (to reduce polymorphisms and thus
facilitate the genome assembly), is an XY strain, and be-
cause it is a widely disseminated and commonly used
strain, particularly for linkage analyses. A total sequence
coverage of approximately 90× was generated from frag-
ment and jumping libraries then assembled using the
ALLPATHS-LG assembler [105]. Contaminating contigs,
adaptors, ambiguous bases as N's in the sequence and all
contigs 200 bp and smaller were removed. The final M.
domestica 2.0.2 genome sequence is available under the
GenBank accession number AQPM00000000.1 and NCBI
assembly accession GCA_000371365.1. All genome
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sequences utilized in de novo assembly of M. domestica
were submitted to the NCBI short read archive (SRA)
under accession numbers SRX217932-217940.
RNA was isolated from individual last instar larvae (n = 1;

accession SRX208995), individual 1-day-old adult males
(n = 2; accessions SRX208993 and SRX208994) and indi-
vidual unmated 1-day-old adult females (n = 2; accessions
SRX208996 and SRX208997) as described previously
[106]. Poly(A) + RNA was isolated as a starting input for
the Ovation® RNASeq System V2 (NuGEN, San Carlos,
CA USA). A check of quality was measured with the
Agilent Bioanalyzer. From samples that passed our quality
control (minimum RNA integrity number (RIN) score of
7), a non-normalized cDNA library was constructed using
a modified version of the Ovation® RNASeq System V2
[107] that generates strand specificity, an important factor
in alignment biases seen with non-directional RNA-seq
data. We sequenced each cDNA library (0.125 lane) on an
Illumina HiSeq 2000 instrument (approximately 36 Gb per
lane) at 100 bp length. These data provided sufficient se-
quence coverage of the estimated exon content (approxi-
mately 29 Mb) of a 691 Mb assembled house fly genome.

Gene annotation
The pipeline used for the annotation of house fly is fully
documented in the NCBI handbook [108] and is briefly
described here. Prior to gene annotation 52% of the
assembly was masked with WindowMasker [109], a word-
based algorithm that identifies repeats de novo. By com-
parison, masking with the RepeatMasker library would
have resulted in only 2.15% of the genome being masked.
The annotation process was initiated by the alignment
to the masked genome of publicly available house fly
transcripts and RNA-seq from project SRP015949 with
Splign [110], and Diptera proteins by ProSplign. Overlap-
ping alignments with compatible frames were assembled
into chains and extended or filled-in as needed by the ab
initio prediction component of Gnomon to form complete
models [137]. The resulting models were then evaluated
and retained or discarded based on multiple criteria, in-
cluding evidence support and homology to existing pro-
teins. Following manual checks we predicted a total house
fly gene count of 15,349, consisting of 14,180 protein-
coding genes (with 17,508 transcripts), 1,165 non-coding
genes and 4 pseudogenes. The number of genes is com-
parable to D. melanogaster (15,771) [111]. A total of 3,985
transcripts were filled-in or extended by ab initio predic-
tion for 5% of their length or more, and 1,375 models were
marked partial. The mean number of exons per transcript
were estimated to be 4.9.

Gene ontology
In total, 17,508 protein sequences were searched against
Swiss-Prot with the BLASTp algorithm [40]. The E-value
cutoff was set at 10−5 and taking the best 20 hits for anno-
tation. Blast2GO [112,113] was used to predict the func-
tions of the sequences and assign GO terms. Simplification
of the annotation into functional categories was also done
by Blast2GO using GO slim. Proteins were summarized
at level 2 into three main GO categories (biological
process, cellular component, and molecular function)
and 33 subcategories.

Defining homology to D. melanogaster
To define homology between D. melanogaster and M.
domestica proteins, we started with an all-against-all
BLASTp, using standard parameters and an E-value cut-
off of 1e-5. We then filtered hits to remove all hits with
similarity below 30% and at least 70% alignment cover-
age (dropping to 40% if the aligned region is at least 100
amino acids long). After filtering, we converted E-values
to scores by taking the negative log10 (capped at 200),
and then for each query computed a minimum score to
keep by subtracting 10 from the minimum of the max-
imum score to the other species or the average of the
top 5 hits. After removing hits below the minimum
score for each query, we clustered proteins into groups
using MCL [114] with the following parameters: −we
2 –force-connected = y -scheme 7. These are considered
homologous groups. This procedure is tuned to be conser-
vative about missing true orthologs at the cost of inflating
group size by linking sets of reciprocal best hits into a sin-
gle group.
To resolve relationships among groups that contain

more than one D. melanogaster or M. domestica member,
we aligned members of each cluster using mafft (with
the –auto option) [115], trimmed the resulting alignments
with trimal (default options) [116], and then computed
trees with phyml [117] using default options. After com-
puting trees for each paralogous group, we used the SDI
algorithm implemented in TreeBest [138] and RIO [118]
to resolve speciation and duplication events. We split
groups that could be completely parsed into smaller
orthologous groups, but retained as large families cases
with complicated histories, which implied lineage-specific
losses at the root of the tree. In many cases these likely re-
sulted from low-confidence basal nodes. For all single
copy orthologous gene pairs between M. domestica and D.
melanogaster, we produced protein alignments using mafft
[115] with the –auto flag and otherwise default parame-
ters. Rates of protein divergence were calculated for each
alignment with PAML version 4.4d [119].

Immune-related genes
Two complementary computational approaches were
used to define the repertoire of immune-related genes
in M. domestica. The first relied on the well-annotated
D. melanogaster genome. We curated a list of immune-
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related D. melanogaster proteins from the literature (up-
dated from [47]), and assumed an immune function for
proteins in M. domestica that are homologous (as de-
fined by the method described above) to proteins with
immune function in D. melanogaster. To supplement
the homology-based annotations, our second approach
applied a HMM originally developed to characterize the
mosquito immune system [120]. Using curated align-
ments of putative immune-related proteins and domains
from D. melanogaster and two mosquitoes available at
ImmunoDB, plus a NIM domain alignment [46], we
built HMMs using HMMER [139], and then computed
the likelihood of containing each domain for each M.
domestica predicted protein. After correcting for the
number of domains tested, we retained all calls with an
E-value <0.01, assigning genes to the class with the low-
est E-value in cases where a single protein hit multiple
domains. The classes included are: several antimicrobial
peptides (attacins, cecropins, defensins, diptericins),
CLIP-domain serine proteases (−A, −B, −C-, −D, and -E),
serpins, C-type lectins (CTLs) and galectins, beta-glucan
binding proteins, peptidoglycan recognition proteins,
fibrinogen-related proteins (FREPs), peroxidases, lyso-
zymes, MD2-like receptors, Nimrods, prophenoloxidases,
scavenger receptors (A, B, and C), thioester-containing
proteins, Tolls, spaetzle-like proteins, and Rel-domain
proteins. In some cases (for example, SrcA, galectin,
FREPs, CLIP-A, CTLs, peroxidases) there is little evi-
dence for an immune role in D. melanogaster, but we
included them in our analysis given the evidence for an
immune role in other metazoans. However, it is important
to note that similarity to an HMM cannot guarantee an
immune function, as many immune-related proteins in
insects share domains with non-immune functions (that is,
serine proteases).
Metabolism/detoxification genes
Primary metabolism of xenobiotics is most commonly
carried out by cytochrome P450s, esterases/hydrolases
and/or GSTs. To identify these genes two approaches
were taken. TBLASTn searches [121] were carried out
using all the known sequences of insect P450s, GSTs
and esterases. We also searched the annotated genome
for appropriately named sequences.
Cys-loop ligand-gated ion channels and actin
Putative M. domestica cys-loop ligand-gated ion channel
subunits were identified by searching the annotated gen-
ome with TBLASTn [121] using protein sequences of every
member of the D. melanogaster cys-loop ligand-gated ion
channel superfamily. The neighbor-joining method [122],
available with the Clustal X program [123], was used to
construct a phylogenetic tree, which was then viewed using
TreeView [140]. Actin sequences were identified using the
same approach.
Chemoreceptors
The GR family was manually annotated using methods
employed for other insect genomes [87]. Briefly, TBLASTn
searches were performed using all D. melanogaster GRs
as queries, and gene models were manually assembled
in TextWrangler [141]. Additional details are provided
in Additional file 16.
Sex determination, sex-biased gene expression and the
evolution of sex-biased genes
Md-traD females were collected from seven populations
in different countries and different continents: Trabzon
(Turkey), Faverges (France), Santa Fé (Spain), Tansania,
North Carolina (USA), Osaka (Japan) and Ipswich
(Australia).
RNA-seq reads of two biological replicates each of adult

males and females were aligned to the reference genome
using TopHat2 (v2.0.8b) [124] with the default parame-
ters. We tested for differential expression between the
male and female samples using Cuffdiff version 2.1.1
[125] with the default parameters and a false discovery
rate of 0.05.
microRNA and microRNA machinery
The mature miRNAs from the miRbase database (release
20) [126] were tested against the M. domestica supercon-
tigs using miRdeep2, version 2.0.0.5 [127,128]. The known
D. melanogaster miRNAs were used as the reference
mature miRNA sets [129-131]. The miRNA machinery
was primarily predicted from the Gnomon annotated M.
domestica genome. Additional gene prediction for genes
putatively involved in double-stranded RNA uptake was
predicted by BLASTp comparison [121] to known genes in
the D. melanogaster genome (v. dmel_r5.9_FB2008_06 [60]).
Additional files

Additional file 1: Table S1. Gene families with the largest increases in
copy number in the M. domestica genome, relative to D. melanogaster.

Additional file 2: Table S2. Transcript coverage varies among insect
genomes as a result of assembly contiguity, dictated by repeat
composition.

Additional file 3: Table S3. Comparison of the M. domestica genome
to a previously published transcriptome of M. domestica.

Additional file 4: Figure S1. Gene Ontology analysis of the M.
domestica genome.

Additional file 5: Table S4. Comparative gene ontology between M.
domestica (Md) and D. melanogaster (Dm).

Additional file 6: Table S5. Cytochrome P450 genes in the M. domestica
genome with reference to the cytochrome P450 genes present in the
D. melanogaster genome.
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Additional file 7: Table S6. Predicted cytochrome P450 genes in the
Glossina genome.

Additional file 8: Table S7. Predicted cytochrome P450 genes in the
M. domestica genome.

Additional file 9: Table S8. Predicted GSTs and esterases in the M.
domestica genome.

Additional file 10: Figure S2. Unrooted neighbor-joining tree showing
the phylogenetic analysis of GSTs of M. domestica (MD, red) in relation to
GSTs from D. melanogaster (DM, green). MUSCLE software was used to
perform multiple sequence alignment [132]. The neighbor-joining
method was applied to the multiple sequence alignment using MEGA 5.0
[133]. Distance bootstrap values of >70% (1,000 replicates) are indicated
at the corresponding nodes. The GST classes are colored distinctively:
microsomal, turquoise; sigma, dark blue; omega, orange; zeta, dark red;
theta, pink; delta, light blue and epsilon, light green. Sequences and the
names for the D. melanogaster GST genes were taken from FlyBase [60].

Additional file 11: Table S9. CysLGICs in the house fly, M. domestica.

Additional file 12: Table S10. Details of MdOBP family genes and proteins.

Additional file 13: Table S11. Details of MdOR family genes and proteins.

Additional file 14: Table S12. Details of MdGR family genes and proteins.

Additional file 15: Table S13. Details of MdIR family genes and proteins.

Additional file 16: Chemoreceptors, including protein sequences.

Additional file 17: Figure S3. Phylogenetic tree of the M. domestica
and D. melanogaster ORs. This is a corrected distance tree with the OrCo
orthologs as the out-group to root the tree. The OrCo orthologs were
declared as the out-group to root the tree, based on the basal position
of this gene in the OR family in analysis of the entire chemoreceptor
superfamily in D. melanogaster [87]. Comments on major gene lineages
are on the right. Suffixes after the gene/protein names include: FIX, sequence
fixed with raw reads; INT, internal sequence missing; JOI, gene model joined
across scaffolds; multiple suffixes are abbreviated to single letters. The M.
domestica and D. melanogaster gene/protein names are highlighted in blue
and red, respectively, as are the branches leading to them to emphasize
gene lineages. Bootstrap support level in percentage of 10,000 replications
of uncorrected distance analysis is shown above major branches. Inferred
ancestral and orthologous lineages are highlighted in double thickness.
Suffixes after the gene/protein names are: NTE, amino terminus missing; CTE,
carboxyl terminus missing; PSE, pseudogene.

Additional file 18: Figure S4. Phylogenetic tree of the M. domestica
and D. melanogaster OBPs. This is a corrected distance tree and was
rooted at the midpoint in the absence of a simple obvious out-group.
See Additional file 17 legend for other details.

Additional file 19: Figure S5. Phylogenetic tree of the M. domestica
and D. melanogaster IRs. This is a corrected distance tree rooted with
IR8a/25a as the out-group, based on their highly conserved sequences
and ancestral position in the family [134-136]. See Additional file 17
legend for other details.

Additional file 20: Figure S6. Phylogenetic tree of the M. domestica
and D. melanogaster GRs. This is a corrected distance tree rooted by
declaring the distantly related and divergent carbon dioxide and sugar
receptor subfamilies as the out-groups. The relationships within the sugar
receptor subfamily are not accurate in this tree because many of these
genes in M. domestica are only partially assembled. See Additional file 17
legend for other details.

Additional file 21: Table S14. Test of sex-biased expression in M.
domestica using cuffdiff [122].

Additional file 22: Table S15. Locations of putative microRNA and
their predicted precursor hairpins from the M. domestica genome.

Additional file 23: Table S16. MicroRNA machinery and genes
predicted to be involved in exogenous double-stranded RNA uptake in
M. domestica.
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