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Abstract 1 

 2 

In order to have an insight into fertilization-induced gene expression, cDNA libraries have 3 

been prepared from isolated wheat egg cells and one-celled zygotes. Two-hundred and 4 

twenty-six egg cell and 253 zygote expressed EST sequences were determined. Most of the 5 

represented transcripts were detected in the wheat egg cell or zygote transcriptome at the first 6 

time. Expression analysis of fourteen of the identified genes and three controls was carried 7 

out by real-time quantitative PCR. The preferential expression of all investigated genes in the 8 

female gametophyte-derived samples (egg cells, zygotes, two-celled proembryos, and basal 9 

ovule parts with synergids) in comparison to the anthers, and the leaves were verified.  Three 10 

genes with putative signaling/regulatory functions were expressed at a low level in the egg 11 

cell but exhibited increased (2-to-33-fold) relative expression in the zygote and the 12 

proembryo. Genes with high EST abundance in cDNA libraries exhibited strong expression in 13 

the egg-cell and the zygote, while the ones coding for unknown or hypothetical proteins 14 

exhibited differential expression patterns with preferential transcript accumulation in egg cells 15 

and/or zygotes. The obtained data support the activation of the zygotic genome before the first 16 

cell division in wheat. 17 

 18 

 19 

Key words: EST sequencing, expressed sequence tag, female gametophyte, fertilization, gene 20 

expression, plant, proembryo, real-time quantitative PCR, Triticum aestivum L.  21 

 22 
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Key message: Wheat genes differentially expressed in the egg cell before and after 1 

fertilization were identified. The data support zygotic gene activation before the first cell 2 

division in wheat.  3 

4 
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Introduction 1 

 2 

The life cycle of plants can be divided into a diploid sporophytic and a haploid gametophytic 3 

phase. Most of our knowledge on plants comes from dominant sporophytes, because the 4 

gametophytes, which consist of only a few cells, are encapsulated in the tissues of the 5 

sporophytic generation. R advances in plant molecular biology allowed us to have deeper 6 

insights into the plant gametophyte development (for reviews; Yang et al. 2010;  Sundaresan 7 

and Alandete-Saez 2010;  Borg and Twell 2010 ; Borg et al. 2009).  8 

The female gametophyte of angiosperms typically consists of one egg cell, one central cell, 9 

two synergid and three antipodal cells. These cell types all have unique structural features and 10 

functions to ensure the success of the reproductive process. Modern, high-throughput 11 

techniques allowed studying of the transcriptome of these specialized cells in model species 12 

(for review; Schmidt et al. 2012b). Functional characterization of the transcripts revealed 13 

differences highlighting specific posttranscriptional regulatory modules and metabolic 14 

pathways characteristic for each female gametophytic cell type (Wuest et al. 2010). However, 15 

comparison of transcripts enriched in the egg and synergid cells, respectively, of Arabidopsis 16 

and rice also revealed considerable species-specific differences in the molecular networks 17 

underlying gametophyte development and function (Ohnishi et al. 2011). 18 

The egg cell has a distinct role in the female gametophyte because it acts as a signaling center 19 

for the development of all female gametophytic cells (Volz et al. 2012) and develops to the 20 

new sporophytic generation after fertilization. Wuest and coworkers (Wuest et al. 2010) could 21 

identify 431 genes which are likely to be specifically expressed in the mature female 22 

gametophyte of Arabidopsis thaliana of which 163 was specifically expressed in the egg. In 23 

animals, maternally deposited mRNAs in the egg cell control early embryonic development 24 
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before the activation of the zygotic genome (Minami et al. 2007). Although, based on various 1 

experimental data, a similar period of maternal control on early embryogenesis was 2 

hypothesized for plants as well (Baroux et al. 2008), a recent comprehensive study revealed 3 

that the zygotic genome is activated right before the first cell division and the earliest phases 4 

of embryogenesis are mostly under zygotic control in Arabidopsis (Nodine and Bartel 2012). 5 

Comparative gene expression profiling of tobacco egg cells, one- and two-celled zygotes 6 

resulted in a similar conclusion (Zhao et al. 2011).  7 

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Identification of 8 

wheat genes and proteins, determining egg cell development and identity, fertilization 9 

success, and early embryogenesis, is of great significance for future practical applications in 10 

addition to their scientific value. However, wheat has a huge and complex genome that could 11 

not have been fully revealed and therefore, the adaptation of high throughput genomic 12 

methods for this species are still limited (Gupta et al. 2008). In contrast, there are routine 13 

methodologies for the isolation and culture of the cell types of the wheat female gametophyte 14 

(Kovács et al. 1994;  Kumlehn et al. 1999;  2001).  Therefore the analysis of gene expression 15 

profiles of wheat egg cells and zygotes via EST sequencing is feasible.  16 

It was well demonstrated by Sprunck and her coworkers, who prepared cDNA libraries from 17 

isolated wheat egg cells and two-celled proembryos (Sprunck et al. 2005). They determined 18 

404 and 789 EST sequences, respectively, and based on the data, compared the expression 19 

profiles of the egg cell and the two-celled proembryo. They concluded that the unfertilized 20 

wheat egg cell has a higher metabolic activity and protein turnover than previously thought. 21 

Moreover, they found that the transcript composition of the proembryos is significantly 22 

distinct from that of the egg cells.  Transcripts, associated with DNA replication as well as 23 
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with high transcriptional and translational activity, characterize the transcriptome of the 1 

dividing zygote.  2 

More recently, Kőszegi and colleagues (Kőszegi et al. 2011) coupled EST sequencing with a 3 

cDNA subtraction approach and identified the egg cell-specific RKD transcription factors 4 

regulating several egg cell-specific genes. 5 

Here an EST sequencing approach is reported using unfertilized wheat egg cells and single-6 

celled zygotes (seven hours after fertilization) for cDNA library production and EST 7 

sequencing. The obtained data complement of those reported by Sprunck and her co-workers 8 

(Sprunck et al. 2005) providing information on single-celled zygote- and further egg cell-9 

expressed genes of wheat. Furthermore, the reported gene expression analysis of selected 10 

genes supports the activation of zygotic genes before the first cell division in wheat as well. 11 

 12 

Materials and methods 13 

 14 

Plant material, cultivation and sample collection 15 

Plants of a spring wheat (Triticum aestivum L.) genotype Siete Cerros were used in the 16 

experiment. After germination, plants were vernalized for five weeks at 2 ˚C and transplanted 17 

into a sand-soil-peat (1:3:1) mixture (2 kg/pot). Plants were grown in controlled conditions 18 

until flowering in a PGR-15 phytotron chamber using the climatic program T2 (Tischner et al. 19 

1997) at a light intensity of 500 mol·m-2s-1 for 8 weeks. During this period, the initial 20 

max/min day/night temperature was increased from 12.5/5.5 ˚C to 23/14 °C. Vernalization 21 

was applied to spring wheat, because the initial max/min day/night temperature of the T2 22 

climatic program was not sufficient to induce the vegetative/generative transition. The relative 23 
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day/night humidity of the air circulating in the chamber was 65/75%. The photosynthetic 1 

photon flux density during cultivation was 500 mol·m-2s-1. 2 

Plants were emasculated, and the spikes were protected with cellophane bags to avoid self- 3 

and cross-pollination four days before anthesis. Reference spikes were also used in order to 4 

check the efficiency of emasculation and hand pollination, which was above 95 %. Prior to 5 

egg cell, zygote, proembryo and ovule isolation, the spikes were surface sterilized with 2% 6 

(v/v) sodium hypochlorite for 20 minutes and washed four times with sterile distilled water. 7 

Egg cells (Fig. 1A,B; n=50), were isolated from non-pollinated pistils, single-celled zygotes 8 

(fertilized egg cells at around the time of karyogamy) (Fig. 1C,D; n=50), and two-celled 9 

proembryos (Fig. 1E,F; n=50), from hand-pollinated pistils 7 and 24 hours after pollination 10 

(HAP), respectively, according to the method described earlier by Kovács et al.  (Kovács et al. 11 

1994). 12 

Basal ovule parts (n=50), containing the synergids, isolated from non-pollinated, 7 HAP and 13 

24 HAP pistils were collected after egg cell, zygote and proembryo isolation, respectively. 14 

Anthers (n=12) were collected in tricellular stage of pollen development, one day before 15 

anthesis. All the samples above were collected in 10-10 l-s of the Lysis/Binding buffer of the 16 

„Dynabeads mRNA Direct” RNA isolation kit (Invitrogen, USA) in three repetitions. Leaf 17 

samples (3 mg each) were excised from 5-day-old seedlings and placed into RNAlater 18 

solution (Invitrogen) in three repetitions. The RNAlater solution was changed for 100 l 19 

Lysis/Binding buffer before RNA isolation.  20 

 21 

mRNA isolation and cDNA library preparation 22 

mRNA isolation was carried out according to the protocol provided by the manufacturer 23 

(„Dynabeads mRNA Direct” RNA isolation kit; Invitrogen) after adding 90 l-s of 24 
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Lysis/Binding buffer and 10 ul oligo-dT-coated Dynabeads to the samples. The mRNA 1 

samples have been eluted into 5 l sterile water and were immediately used in total for cDNA 2 

library preparation using the „SMART cDNA Library Construction Kit” (Clonetech 3 

Laboratories, USA). First strand cDNAs have been synthesized by Supercript II reverse-4 

transcriptase (Invitrogen) using the adaptors provided in the kit. Two-stranded cDNA was 5 

produced by PCR amplification for 30 cycles due to the limited starting material. This number 6 

of cycles still resulted in exponential target amplification as determined experimentally (data 7 

not shown). The adaptor-containing cDNAs were digested by Sfi I and ligated to TriplEx2 8 

phagemid arms. Recombinant phages were produced using the Gigapack III Gold Packaging 9 

Extract (Stratagen, USA).  10 

 11 

EST sequencing 12 

Individual phage plaques were converted to pTriplEx2 plasmids using Escherichia coli 13 

BM25.8 as a host as described in the manual of the cDNA library construction kit. Plasmid 14 

DNAs were purified using a modified alkali lysis protocol (Feliciello and Chinali 1993). 15 

Colony PCR has been carried out using pTriplEx2 5’ sequencing (5’ 16 

TCCGAGATCTGGACGAGC 3’) and the T7 promoter (5’ 17 

TAATACGACTCACTATAGGGC 3’) primers at 94oC 5’ 1x, 94oC 15’’ 52oC 30’’ 72oC 1’ 18 

30’’ 28x, 72oC 5’ 1x PCR cycle parameters using Fermentas (Lithuania) Taq DNA 19 

polymerase. Plasmids with inserts >100 bp have been selected for sequencing by Macrogene 20 

Inc. (Korea) using the pTriplEx2 5’ sequencing primer. The EST sequences derived from the 21 

egg cell were designated as EPS# and those from the zygote as ZIG#. The sequences have 22 

been deposited in the EMBL Nucleotide Sequence Database with the accession numbers 23 

HE862417-HE862958 (http://www.ebi.ac.uk/embl/).  24 



Author’s copy 
The final paper is published by Springer-Verlag Berlin Heidelberg in 
Plant Cell Reports March 2013, Volume 32, Issue 3, pp 339-348 
doi.10.1007/s00299-012-1367-0 
The final publication is available at link.springer.com/article/10.1007/s00299-012-1367-0 
 

 9

 1 

Sequence analysis and annotation 2 

The homology of vector sequence-free ESTs to database sequences was investigated using the 3 

NCBI BLAST server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequence annotation and 4 

annotation analysis were carried out by the BLAST2GO analysis tool (Götz et al. 2008) using 5 

default settings.  6 

 7 

Real-time quantitative PCR 8 

mRNA isolation and cDNA synthesis were made as described above for cDNA library 9 

preparation. For real time quantitative PCR (RT-QPCR) assays and evaluations, an ABI 10 

7900HT equipment and its software (SDS version 2.3; Applied Biosystems, USA) were used 11 

based on SYBR-green detection and CT analysis as described elsewhere in more details 12 

(Szűcs et al. 2006). Three assays were carried out on independent samples with at least two 13 

parallel measurements each. The RT-QPCR master mix was purchased from Applied 14 

Biosystems.  The primers used are listed in Supplementary material 1.  15 

16 



Author’s copy 
The final paper is published by Springer-Verlag Berlin Heidelberg in 
Plant Cell Reports March 2013, Volume 32, Issue 3, pp 339-348 
doi.10.1007/s00299-012-1367-0 
The final publication is available at link.springer.com/article/10.1007/s00299-012-1367-0 
 

 10

Results 1 

 2 

The cDNA libraries 3 

The cDNA libraries contain approximately 2,4x106 and 0,45x106 individual recombinant 4 

phages in the cases of un-fertilized egg cells and one-celled zygotes, respectively, based on 5 

the phage titer and the ratio of insert containing/empty phagemids.  The average insert size 6 

was determined as 490 bp for egg cell ESTs (EPS) and 416 bp for zygote ESTs (ZIG). The 7 

redundancy of the clones was low as the randomly selected 246 egg cell EST sequences 8 

represented 226, while the 297 zygote ones 253, different genes (singletons). 9 

 10 

Characterization of EST sequences of wheat genes expressed before and/or after 11 

fertilization 12 

Randomly selected recombinant phagemids (300-300 from both libraries) have been 13 

converted into pTripleEx2 plasmid clones. Plasmids carrying inserts larger than 100 bp have 14 

been purified and subjected to sequencing using a 5’ pTriplEx2 vector primer. As a result, 15 

246 EPS and 297 ZIG high quality sequences could be obtained. The ESTs have been 16 

subjected to BLAST analysis and annotation following the in silico removal of vector 17 

sequences. Detailed results of these analyses are summarized as Supplementary material 2 18 

(egg cell) and 3 (zygote). 19 

Some of the genes were represented by several ESTs (Table 1) that may indicate abundant 20 

expression in the given cell type. However, it has to be taken into account that the cDNA 21 

library has been made by SMART PCR. The advantage of using the SMART PCR method is 22 

that it preferentially enriches for full-length transcripts. However, in doing so, it may 23 

introduce compositional biases and alter the relative abundance of transcripts. In the EPS 24 
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library, sequences representing TA64547_4565 coding for a putative dihydrolipoamide 1 

dehydrogenase were found to be the most redundant (7 occurrences) while in the ZIG library 2 

CD889724 coding for a hypothetical protein (12 occurrences).  3 

From the 246 EPS sequences, 208 showed similarity to database sequences based on the 4 

BLASTX algorithm (among which 76 was similar to hypothetical or expressed proteins with 5 

no known function), and a further 19 using only the BLASTN homology search. The 6 

remaining 19 sequences had no homology to known ESTs/genes/proteins. Considering the 7 

ZIG ESTs, these numbers were: 297 total; 258 BLASTX (113 hypothetical or expressed 8 

proteins); 21 only BLASTN; 18 no homology.  9 

It was also tested how many of the ESTs correspond to transcripts that have already been 10 

found to occur in egg cell or zygote cDNA libraries based on the sequences stored in the  11 

“Wheat Transcript assembly 2” dataset from TIGR (The Institute for Genomic Research; 12 

updated July 2007). The overlap was minimal (<1%) indicating that most of the identified 13 

EST sequences carry novel information on the expression of genes in wheat egg cells and 14 

zygotes.  15 

 16 

Selection of genes for expression analysis  17 

Fourteen sequences have been selected for further gene expression analysis based on the 18 

annotation of the represented genes.  19 

Three of the ZIG ESTs were selected because they represent genes with putative roles in 20 

signal transduction (ZIG75 was annotated as putative mitogen-activated protein kinase kinase, 21 

TaMAPKK) and transcriptional regulation (ZIG43 was annotated as E2F transcription factor-22 

like, TaE2F; ZIG45 was annotated as transcription factor B3-like, TaTFB3). Due to their 23 

potential regulatory functions, it was to be investigated whether their transcription is induced 24 
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by fertilization. The relative expression of the TaSERK3 gene coding for a putative somatic 1 

embryogenesis receptor kinase was also determined to serve as a kind of control as the protein 2 

was hypothesized to have a role in zygotic embryogenesis (Singla et al. 2008).  3 

Further four zygote-expressed sequences (ZIG 47,253, 298 303,) were selected based on their 4 

unique sequences. As they have no sequence homologues in the available databases, we 5 

supposed that at least some of them may have fertilization/zygote specific expression pattern. 6 

A similar approach was followed by Kőszegi et al. (2011) who identified in this way the egg-7 

cell-specific members of the wheat RKD transcription factor family.  8 

From the egg cell library, five ESTs (EPS 47, 49, 104, 124, and 282) were randomly selected 9 

from those that represented genes that code for hypothetical proteins or had no homologous 10 

sequences in the protein databases as determined by the BLASTX algorithm.  11 

EPS76 and EPS87 sequences were chosen as positive controls as they have several ESTs but 12 

only from wheat egg cell-derived cDNA libraries, therefore, they may code for egg cell-13 

specific transcripts. The EPS76 represented gene (TaECA1) is homologous to a barley 14 

(Hordeum vulgare L.) gene the product of which is annotated as “Early Culture Abundant 15 

Protein 1” (HvECA1, gene bank accession: AAF23356.1) as it is expressed in embryogenic 16 

microspore cultures during the early culture phase (Vrinten et al. 1999). The gene represented 17 

by the EST sequence EPS87 (TaDSUL) codes for a protein with small ubiquitin-like modifier 18 

(SUMO) and ubiquitin-like domains (di-SUMO-like or DSUL, gene bank accession: 19 

ACL50300.1). Recently, the maize homologue of this protein has been characterized in detail 20 

by Srilunchang et al.   (Srilunchang et al. 2010) who specified that it is required for nuclei 21 

positioning, cell specification and viability during female gametophyte maturation.  22 

In order to have appropriate reference genes expressed ubiquitously in the wheat plant, 23 

including the egg cell and zygote, the “Wheat Transcript assembly 2” dataset from TIGR  has 24 
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been analyzed for genes equally represented by EST sequences in various wheat cDNA 1 

libraries (including those made from egg cells or zygotes). Two of the genes, coding for a 2 

putative NADPH oxidase (TA61480_4565) and for a hypothetical ubiquitin conjugase 3 

(TaUBC; TA64564_4565), respectively,  identified by this in silico gene expression approach 4 

(for details see Szűcs et al. 2010) were used as reference genes in the RT-QPCR experiments.  5 

 6 

Gene expression analysis 7 

Samples were collected from mature egg cells (at anthesis), one-celled zygotes (7 HAP), 8 

proembryos (24 HAP) (see Fig.1.), and from the lower ovule parts, they were removed off (at 9 

anthesis, 7 and 24 HAP), as well as from anthers and young leaves.  10 

As it is shown on Fig. 2, the relative expression of the four investigated genes annotated as 11 

having potential functions in signaling/transcription (TaMAPKK, TaE2F, TaTFB3, 12 

TaSERK3) was lower in leaves or anthers in comparison to the ovule-derived samples. Three 13 

of them exhibited an increase in their relative mRNA level in response to the fertilization (in 14 

the zygote/proembryo versus the egg cell). This increase was strong (more than 20-fold and 5-15 

fold, respectively) in the case of the two transcription factors TaTFB3 and TaE2F. The 16 

relative expression of the TaSERK3 gene was the highest in the ovules. Its expression was 17 

increased by more than 2-fold in the fertilized egg cell and the one-day-old zygote as 18 

compared to the unfertilized egg cell. The TaMAPKK gene showed a rather constitutive 19 

expression in these samples. As far as the relative expression of these genes in the egg cell is 20 

considered, the TaMAPKK gene exhibited a high relative expression (similar to the 21 

expression level of the reference gene coding for an ubiquitin conjugase) while the transcripts 22 

of the three other genes were much less abundant (app. two orders of magnitude lower 23 

abundance).  24 
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The nine genes represented by ESTs with no homology to known sequences and the two 1 

control ones (TaECA1; TaDSUL) all exhibited strong egg cell/zygote/proembryo-specific 2 

relative expression as compared to ovule-parts, anthers and leaves. These genes were 3 

classified into four categories based on their expression pattern. TaDSUL, TaECA1, EPS49, 4 

EPS104, and ZIG298 exhibited decreased expression in the proembryo in comparison to the 5 

egg cell and zygote where they were expressed at more or less the same level (Fig. 3A). 6 

EPS124 and ZIG47 genes exhibited a rather constitutive expression in these cell types (Fig. 7 

3B). EPS47, and ZIG253 showed a moderately (2-to-3-fold) increased zygotic expression 8 

(Fig. 3C), while EPS282, and ZIG303, showed a high increase in their relative mRNA levels 9 

in the zygote and proembryo as compared to the egg cell (Fig. 3D).  10 

The normalized mRNA levels of the selected genes were compared in the egg cell in order to 11 

have a view on their relative expression strength in this cell type (Fig. 3E). Based on this 12 

parameter, the genes could be classified into three categories. The EPS47 gene exhibited a 13 

rather low expression level in the egg cell. In contrast, the two genes with egg cell-specific in 14 

silico expression pattern (TaECA1 and TaDSUL) as well as another gene represented by 15 

EPS104 exhibited a strong relative expression in this cell type. The further seven investigated 16 

genes showed an “intermediate” expression level as compared to the two above groups. 17 

 18 

Discussion 19 

 20 

Egg cells of Angiosperms develop from a single megaspore mother cell through a series of 21 

meiotic and mitotic divisions together with the three other cell-types of the female 22 

gametophyte, the synergids, the antipodal cells and the central cell. Unfolding of 23 

developmental pathways leading towards the formation of the female gametophyte, including 24 
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pattern formation and cell specification, recently achieved considerable progress due to 1 

studies of  Arabidopsis mutants (for reviews; Sundaresan and Alandete-Saez 2010;  Yang et 2 

al. 2010).  However, the unique features of the egg cell underlying its biochemical identity, 3 

metabolic activity, and developmental potential are still poorly understood (Russell 1993). 4 

Recent genomic approaches allowed a deep insight into the egg cell transcriptome of the 5 

model species Arabidopsis and rice (Wuest et al. 2010;  Ohnishi et al. 2011) and these data 6 

indicate considerable species-specific differences. 7 

Here, the production of a representative phagemid cDNA library prepared from isolated wheat 8 

egg cells (and from one-celled zygotes; see further) is reported. The low redundancy of the 9 

library allowed the identification of more than two-hundred new wheat egg-cell transcribed 10 

genes via EST sequencing (see Supplementary material 2 for the detailed gene list). 11 

The EST sequence population generated in this study hardly have any overlap with those that 12 

have been previously deposited in public databases by others using similar approaches. A 13 

possible explanation is the use of different methods for cDNA library preparation and 14 

sequencing. The SMART cDNA Library technology applied in the present study resulted in 15 

the enrichment of full-length cDNA sequences, which are cloned directionally into the 16 

pTriplEx2 phagemid vector. As we used the 5’ pTriplEx2 sequencing primer for EST 17 

generation, our data represent 5’ non-coding and coding sequences underrepresented in other 18 

EST populations generated from unidirectionally cloned cDNA fragments (e.g. by Sprunck et 19 

al. 2005). In the absence of the wheat genome sequence, it cannot be excluded, however, that 20 

the same transcripts are represented by different non-overlapping ESTs in the various studies. 21 

The EST sequencing approach was also suitable for the identification of transcripts with 22 

preferential accumulation in the egg cell. As the result of a similar study, Sprunck and co-23 

workers (Sprunck et al. 2005) have reported several genes to be expressed specifically in the 24 
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wheat egg cell and two-celled zygote (proembryo) in comparison to vegetative cells. More 1 

recently, Kőszegi et al. (2011) reported on the identification of wheat egg cell-expressed 2 

transcription factors belonging to the plant-specific RKD family. The ectopic expression of 3 

the Arabidopsis homologues of these transcription factors induced proliferation and the 4 

expression of egg cell-specific genes in vegetative tissues (Kőszegi et al.  2011). These 5 

previous studies clearly indicated the potentials of the EST sequencing approach in cell-6 

specific transcript identification. We could extend the wheat female gametophyte-specific 7 

gene set via analyzing the expression of nine egg cell and zygote ESTs that code for unknown 8 

or hypothetical proteins. The assumption that the under-representation of these sequences in 9 

the databases is due to their cell/development specific expression pattern was validated by 10 

RT-QPCR analysis.  11 

Fertilization, the fusion of female and male gametes of sexually reproducing multicellular 12 

organisms initiates a series of events (maternal-to-zygotic transition, MZT) that finally leads 13 

to the development of a new organism through embryogenesis. The timing of zygotic gene 14 

activation (ZGA) in plants is somewhat controversial (Baroux et al. 2008;  Zhao et al. 2011;  15 

Nodine and Barte2012). Recent data, however,  indicate that it follows fertilization very early 16 

and the first steps of embryogenesis are mostly under zygotic control in Arabidopsis and 17 

tobacco (Nodine and Bartel 2012;  Zhao et al. 2011). In animals, the extent of maternal 18 

control and the timing of MZT vary greatly among species, and the MZT not always 19 

coincides with the gradual process of ZGA (for review; Shen-Orr et al. 2010). The variability 20 

in the timing and the molecular background of ZGA and MZT among plant species is 21 

currently unknown. 22 

Sprunck et al.  (Sprunck et al. 2005) compared a set of ESTs from one day-old two-celled 23 

wheat zygotes to that of mature egg cells. Their EST sequencing data, complemented by the 24 
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expression analysis of selected genes, indicated that the zygotic genome is already activated 1 

in the proembryos. In the present work, we complemented these data selecting an earlier time 2 

point (7HAP) for the isolation of zygotes. It was supposed that at this rather early time point 3 

the direct effect of the fertilization event on the zygotic transcriptome can be investigated 4 

including the activation of genes associated with the cell cycle entry. Moreover, in this way, 5 

we could also define whether ZGA precedes the first zygotic cell division in wheat. The 6 

increased relative expression of several genes in the single-celled wheat zygote in comparison 7 

to the egg cell indeed indicated a very early ZGA in wheat. Similar assumption was obtained 8 

by the comparison of gene expression in tobacco egg cells and one-celled zygotes using 9 

cDNA subtraction (Ning et al. 2006) and EST sequencing (Zhao et al. 2011) approaches.  10 

Therefore, Arabidopsis, tobacco and wheat data support that ZGA starts in plants before the 11 

first cell division of the zygote.  12 

The EST sequences generated for this study hardly have any overlap with those that have 13 

been previously deposited in public databases by others using similar approaches. A possible 14 

explanation is the use of different methods for cDNA library preparation and sequencing. The 15 

SMART cDNA Library technology applied in the present study resulted in the enrichment of 16 

full-length cDNA sequences, which are cloned directionally into the pTriplEx2 phagemid 17 

vector. As we used the 5’ pTriplEx2 sequencing primer for EST generation, our data represent 18 

5’ non-coding and coding sequences underrepresented in other EST populations generated 19 

from unidirectionally cloned cDNA fragments (e.g. by Sprunck et al. 2005). In the absence of 20 

the wheat genome sequence, it cannot be excluded, however, that the same transcripts are 21 

represented by different non-overlapping ESTs in the various studies. 22 

Although in the present study only a relatively low number of egg cell and zygotic ESTs were 23 

sequenced (less than 300 each), the transcripts related to signaling (e.g. MAPKK), cell cycle 24 
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progression (E2F transcription factor, Cullin, Skp1, etc.) or transcription (A2 and B3 domain 1 

transcription factors, etc.) were enriched among the zygotic ones (see the whole gene lists as 2 

Supplementary materials 2 and 3).  The expression of three of these genes (MAPKK, E2F, 3 

and TFB3) was analyzed in more detail. MAP-kinase cascades are central to mitogen 4 

signaling in eukaryotes, including plants (Mishra et al. 2006), and the role of specific 5 

MAPKKKs (upstream regulators of MAPKKs) in the  post-fertilization signaling events of 6 

Solanum chacoense ovules has already been demonstrated (Gray-Mitsumune et al. 2006). 7 

Although we could not see a strong induction in the expression of TaMAPKK, one can 8 

suppose that the activity of this kinase is regulated post-translationally in response to 9 

fertilization. 10 

The low relative expression level of the transcription factors E2F and TFB3 in the egg cell 11 

was found to be considerably augmented in response to fertilization. It has to be emphasized 12 

that E2F transcription factors are important regulators of the cell cycle (especially at the 13 

G0/G1-S  cell cycle phase transition; Berckmans and De Veylder 2009); several B3-domain 14 

transcription factors have been associated with the initiation and progression of 15 

embryogenesis (Suzuki and McCarty 2008). Therefore, a similar role for TaE2F in the first 16 

zygotic cell division, and TaTFB3 in embryogenesis, may also be hypothesized based on their 17 

sequence homology and expression pattern. In contrast, the relative expression of the 18 

TaSERK3 gene previously hypothesized to be associated with embryogenesis (Singla et 19 

(Singlaal. 2008) was lower in the egg cell, zygote and proembryo as compared to the ovule 20 

from where these cells have been removed. This indicates a more general role for this kinase 21 

in the gametophyte development. 22 

The preferentially egg cell-specific expression of TaECA1 and TaDSUL the transcripts of 23 

which were abundantly represented among wheat egg cell ESTs (Sprunck et al. 2005 and the 24 
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present study) was confirmed by RT-QPCR analysis. The maize homologue of TaDSUL, a 1 

protein may be involved in the post-translational regulation of other proteins by sumoylation 2 

during female gametophyte maturation (Srilunchang et al. 2010). This gene was reported to 3 

be exclusively expressed in the micropylar region of the immature female gametophyte, while 4 

after cellularization its expression was restricted to the egg cell and the zygote (Srilunchang et 5 

al. 2010). The transcripts coding for HvECA1-homologous proteins were found to be the 6 

most abundant transcripts in tobacco as well as wheat egg cells as well (Sprunck et al. 2005; 7 

Ning et al. 2006;  Zhao et al. 2011). The biochemical or molecular functions of ECA1 8 

homologues are, however, not known yet. The EPS104 sequence with no annotation 9 

represents a gene with similar expression properties. Therefore, these genes are good 10 

candidates to isolate strong egg cell specific plant promoters that could potentially be used to 11 

manipulate female fertility and/or parthenogenesis.  12 

In addition to the annotated sequences, we have analyzed the expression of several ESTs that 13 

code for hypothetical or unknown proteins. If the sequence/function of the represented genes 14 

will be identified, e.g. following the whole genome sequencing of the wheat genome, it will 15 

contribute to our knowledge about the molecular and cellular events underlying the first steps 16 

of zygotic embryogenesis in plants.  17 

The EST sequencing approaches has inherent drawbacks as they are relatively low 18 

throughput, expensive and generally not quantitative. Establishing the exact inventory and 19 

timing of fertilization-induced events in plants may be facilitated by the recent progress in 20 

high throughput, quantitative, and cheaper RNA sequencing approaches (Schmidt et al. 21 

2012a;  Schmid et al. 2012b). The state of the art and the future potential of using these new 22 

techniques in the analysis of plant gametophyte development have recently been reviewed by 23 

Schmid et al. (Schmid et al. 2012b). 24 
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Figure legends 

 

Figure 1. Light and fluorescent micrographs of an unfertilized mature egg cell (A, B), one-celled 

zygotes (7 hours after fertilization; C, D) and bicellular pro-embryos (24 hours after fertilization; E, 

F).  

 
Figure 2. The relative expression of genes selected based on their potential 

signaling/regulatory role during fertilization. A. The relative expression of the genes in 

various cell types/organs. Expression in the egg cell was chosen as a reference (relative 

expression=1). B. Relative expression of the genes in the egg cell. The TaUBC gene 

expression was chosen as a reference (relative expression=1). TaSERK3 was used as a 

positive control (Singla et al. 2008). Expression in the egg cell was normalized to the 

expression of the genes coding for a NADPH oxidase (TA61480_4565) and an ubiquitin 

conjugase (TA64564_4565). LEAF – young leaf; ANT- anther; OV- basal ovule part with 

synergids; the numbers indicate the time of isolation after fertilization in hours; EC – 

unfertilized egg cell; ZYG – zygote, isolated 7 hours after fertilization; ProE- bicellular 

proembryo, isolated 24 hours after fertilization. Average of relative gene expression values 

derived from three independent sampling, RNA isolation and cDNA synthesis is shown with 

standard errors. 

 

Figure 3. The relative expression of genes represented by ESTs with no established homology 

to proteins with known function. A-D. The relative expression of the genes in various cell 

types/organs. Expression in the egg cell was chosen as a reference (relative expression=1). 

Genes are shown in separate histograms according to their expression pattern. E. Relative 

expression of the same genes in the egg cell. The TaUBC gene expression was chosen as a 
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reference (relative expression=1). TaECA1 (homologous to HvECA1, Vrinten et al. 1999) 

and TaDSUL (Srilunchang et al. 2010) genes were used as positive controls for egg 

cell/zygote-specific expression. Expression in the egg cell was normalized to the expression 

of the genes coding for a NADPH oxidase (TA61480_4565) and an ubiquitin conjugase 

(TA64564_4565).  

LEAF – young leaf; ANT- anther; OV- basal ovule part with synergids, the numbers indicate 

the time of isolation after fertilization in hours; EC – unfertilized egg cell; ZYG – zygote, 

isolated seven hours after fertilization; ProE- two-celled proembryo, isolated 24 hours after 

fertilization. Average of relative gene expression values derived from three independent 

sampling, RNA isolation and cDNA synthesis is shown with standard errors. 
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Table 1. Genes (TAs) with more than one representation among the sequenced ESTs 

 
  

EGG CELLS 
PROBE_ID LENGTH BLAST HIT OCCURENCES 
EPS102 689 TA62694_4565 Putative OsCTTP  2 
EPS109 293 TA64547_4565 Putative dihydrolipoamide dehydrogenase  7 
EPS115 403 TA62221_4565 putative carbamoyl phosphate synthetase  2 
EPS124 710 TA92976_4565 Armadillo/beta-catenin repeat protein-like  2 
EPS133 579 TA57365_4565 GTP-binding nuclear protein Ran/ 2 
EPS136 690 CJ567765 Putative ubiquinone oxidoreductase subunit  3 
EPS163 218 TA68893_4565 NME2 protein  2 
EPS176 884 TA58264_4565 Glyceraldehyde-3-phosphate dehydrogenase, 

cytosolic 3  
4 

EPS181 509 TA57874_4565 40S ribosomal protein S8  2 
EPS189 565 BJ289037 Ribosomal protein L18a-like  2 
EPS246 109 CK208074 Ubiquitin C variant  2 
EPS64 677 TA62564_4565 Ribosomal protein L15  2 

ZYGOTES 
PROBE_ID LENGTH BLAST HIT OCCURENCES 
ZIG102 370 CJ623917 Ribosomal protein l34  2 
ZIG107 487 TA56814_4565 Cytosolic heat shock protein 90  2 
ZIG110 397 BJ283589 Hypothetical protein OJ1513_F02.133  2 
ZIG119 626 BJ310704 Hypothetical protein  2 
ZIG151 297 TA52896_4565 Ribosomal protein L35A  2 
ZIG178 375 TA63131_4565 Hypothetical protein P0413G02.21  2 
ZIG182 209 TA93140_4565 2 
ZIG2 458 CJ590407 Cytosolic heat shock protein 90  5 
ZIG217 287 TA59204_4565 26S proteasome regulatory particle non-ATPase 

subunit12  
2 

ZIG22 320 CK196860 Cytosolic glyceraldehyde-3-phosphate dehydrogenase  3 
ZIG234 214 CJ570397 Disease-resistent-related protein  2 
ZIG25 410 CD889724 Hypothetical protein OJ1513_F02.133  12 
ZIG256 485 TA55830_4565 P0697C12.13  2 
ZIG28 168 DN949012 40S ribosomal protein S28  2 
ZIG311 630 TA63488_4565 60S ribosomal protein L17-1  2 
ZIG36 233 CK194926 60s ribosomal protein L21  2 
ZIG49 421 TA59714_4565 Hypothetical protein OJ1513_F02.133  5 
ZIG5 468 TA60745_4565 Expressed protein  2 
ZIG50 242 CD927088 Lactoylglutathione lyase  7 
ZIG65 431 TA63098_4565 3 
ZIG88 157 CK151631 T6D22.2  2 
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