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SUMMARY

Skin is constantly exposed to bacteria and antigens,
and cutaneous innate immune sensing orchestrates
adaptive immune responses. In its absence, skin
pathogens can expand, entering deeper tissues
and leading to life-threatening infectious diseases.
To characterize skin-driven immunity better, we
applied living bacteria, defined lipopeptides, and
antigens cutaneously. We found suppression of im-
mune responses due to cutaneous infection with
Gram-positive S. aureus, which was based on bacte-
rial lipopeptides. Skin exposure to Toll-like receptor
(TLR)2-6-binding lipopeptides, but not TLR2-1-
binding lipopeptides, potently suppressed immune
responses through induction of Gr1+CD11b+

myeloid-derived suppressor cells (MDSCs). Investi-
gating human atopic dermatitis, in which Gram-pos-
itive bacteria accumulate, we detected high MDSC
amounts in blood and skin. TLR2 activation in skin
resident cells triggered interleukin-6 (IL-6), which
induced suppressive MDSCs, which are then re-
cruited to the skin suppressing T cell-mediated recall
responses such as dermatitis. Thus, cutaneous bac-
teria can negatively regulate skin-driven immune re-
sponses by inducing MDSCs via TLR2-6 activation.

INTRODUCTION

The skin is the largest organ at the interface between the environ-

ment and the host. The skin plays a major protective role not

only as physical barrier but also as the site of first recognition

of microbes and orchestrates consecutive immune responses

(Naik et al., 2012; Swamy et al., 2010; Volz et al., 2012).

Staphylococcus aureus (S. aureus) is one of the most potent

skin pathogens and is found to colonize skin of about 30%–
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50% of healthy adults, among them 10%–20% persistently

(Lowy, 1998). Coming from the skin, S. aureus can infect any tis-

sue of the body and cause life-threatening diseases, particularly

because of the widespread occurrence of antibiotic-resistant

strains, known as methicillin-resistant Staphylococcus aureus

(MRSA) (Saeed et al., 2014). In atopic dermatitis (AD) patients,

there is an approximately 200-fold increase of S. aureus coloni-

zation with more than 90% of AD patients displaying S. aureus in

comparison to the healthy skin (Leung and Bieber, 2003).

Microbes are first sensed by the innate immune system

through pattern-recognition receptors (PRRs), which recognize

microbe-associated molecular patterns (MAMPs) (Kawai and

Akira, 2010). Both epithelial cells and resident innate immune

cells in the skin express PRRs (Kupper and Fuhlbrigge, 2004;

Lai and Gallo, 2008). Among PRRs, Toll-like receptors (TLRs)

are a well-characterized family with distinct recognition profiles

(Kawai and Akira, 2010). TLR2 has emerged as a dominant re-

ceptor for Gram-positive bacteria, especially S. aureus (Bieder-

mann, 2006; Lai and Gallo, 2008; Mempel et al., 2003). Among

TLR2 ligands, lipoproteins seem to be especially important

because the lipoprotein diacylglyceryl transferase (lgt) deletion

mutant of S. aureus induces much less proinflammatory cyto-

kines in human cell lines (Stoll et al., 2005) and less TLR2-

MyD88 adaptor protein-mediated inflammation in a mouse

model of systemic infection (Schmaler et al., 2009). It is now es-

tablished that there are different classes of lipopeptides that all

bind TLR2 (Müller et al., 2010; Schmaler et al., 2009). However,

how these TLR2 ligands differ in regard to functional conse-

quences has not been thoroughly investigated. TLR2 is known

to form heterodimers with TLR1 and TLR6 to interact with this

broad spectrum of ligands (Kang et al., 2009). TLR1 is required

as a coreceptor for recognition of triacylated lipopeptides,

such as Pam3Cys (Buwitt-Beckmann et al., 2006; Jin et al.,

2007), while diacylated lipopeptides, such as FSL-1 or

Pam2Cys, interact with TLR2-TLR6 heterodimers (Mae et al.,

2007; Mühlradt et al., 1997). Functional properties of S. aureus

lipopeptides in respect to TLR2 heterodimers have been investi-

gated in several cell types (Buwitt-Beckmann et al., 2006; Hajjar

et al., 2001), but evidence demonstrating specific functional
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consequences for the activation of different heterodimers in vivo

is lacking.

Sustained activation of TLRs causes persistent production of

proinflammatory cytokines, such as tumor necrosis factor

(TNF) or interleukin-6 (IL-6), leading to tissue damage (Kawai

and Akira, 2010; Kupper and Fuhlbrigge, 2004; Lai and Gallo,

2008). Consequently, to reconstitute the integrity of the surface

organ, mechanisms to limit cutaneous inflammation must be

effective (Lai et al., 2009). In recent years, Gr1+CD11b+

myeloid-derived suppressor cells (MDSCs) have been identified

as one cell population responsible for modulating immune re-

sponses (Bronte, 2009; Gabrilovich and Nagaraj, 2009; Os-

trand-Rosenberg and Sinha, 2009). The most characteristic

functional property of MDSCs is to suppress T cell responses

(Gabrilovich et al., 2001; Kusmartsev et al., 2000). In the context

of inflammation the precise function of MDSCs and the mecha-

nisms of MDSC induction are not well-understood; but in a

sepsis model with Gram-negative bacteria their induction has

been shown to depend on TLR4-MyD88 activation (Delano

et al., 2007), and in tumor models, different innate cytokines,

such as IL-6, induce MDSC accumulation (Bunt et al., 2007;

Chalmin et al., 2010). However, the suppression of IL-6 also

increases susceptibility to bacterial and fungal infections, indi-

cating pleiotropic effects of IL-6 (Hoetzenecker et al., 2012).

In this study, we have identified a pathway of immune regula-

tion that operates in the skin. We mimicked intense cutaneous

contact to bacteria in different in vivo mouse models by using

living bacteria and lipopeptides. We investigated AD as a model

for massive cutaneous immune sensing of Gram-positive bacte-

ria in humans. We found that cutaneous infection with S. aureus

caused immune suppression. The exposure to TLR2-6 ligands

was sufficient to cause an almost complete reduction of consec-

utive cutaneous recall responses. This skin exposure induced

accumulation of MDSCs, allowing MDSC recruitment to the

skin, and suppression of T cell-mediated recall responses. Sig-

nals through TLR2 on skin-resident cells, but not on recruited

hematopoietic cells, as well as cutaneous IL-6 induction, were

necessary and sufficient for the expansion of MDSCs and

consecutive immune suppression. These data demonstrate

that cutaneous recognition of TLR2-6 ligands orchestrates a

unique pathway of cutaneous immune modulation mediated

by MDSCs, indicating a yet unknown level of immune

counterregulation.

RESULTS

Cutaneous Staphylococcus aureus Induces
Immune Suppression
We aimed to characterize the consequences of intense cuta-

neous innate immune sensing as in the case of colonization or

infection with Gram-positive bacteria. We established a mouse

model of epicutaneous colonization with pathologically relevant

S. aureus (Wanke et al., 2013). Mimicking S. aureus skin infection

by applying living S. aureus bacteria onto the skin with disrupted

skin barrier, we found a distribution of the bacteria not only in the

skin but also in the internal organs (spleen and kidney) (Fig-

ure 1A), indicating the importance of the skin as an effective

defense immune organwith the potential to impact the whole im-

mune system. To investigate how bacterial infection influences
I

consecutive immune responses, we combined this model of

bacterial colonization and the murine T cell-mediated contact

hypersensitivity (CHS) to FITC, in which bacteria were applied

epicutaneously during FITC re-exposure of FITC-sensitized

mice (see protocol in Figure S1A available online). The applica-

tion of FITC onto the ear led to FITC-specific dermatitis as deter-

mined by ear swelling, which corresponded to the strength of the

FITC-specific immune response. The cutaneous application of

S. aureus 7 days previous to the FITC challenge did not enhance,

but significantly reduced ear swelling and immune cell infiltration

(Figures 1B and 1C). This immune suppression was completely

dependent on immune sensing of bacterial lipoproteins, as lipo-

protein-deficient S. aureusmutant (Dlgt) (Stoll et al., 2005) failed

to induce immune suppression. Injecting S. aureus into the sub-

epithelial dermis (intracutaneous route) also induced consecu-

tive immune suppression, which, however, tended to be weaker

compared to effects of S. aureus application onto the epithelium

(Figure S1B). To identify underlying mechanisms of S. aureus-

induced cutaneous immune suppression, we analyzed skin-

draining lymph nodes. Only exposure to wild-type (WT)

S. aureus bacteria and not the lipoprotein-deficient Dlgt S.

aureus reduced ex vivo FITC-specific T cell proliferation (Fig-

ure 1D). In the spleen, CD4+ and CD8+ T cells were also reduced

in mice cutaneously exposed to WT S. aureus, but not in mice

exposed to lipoprotein-deficient Dlgt S. aureus (Figure 1E).

Only in mice displaying suppressed T cells we detected a

strong increase of Gr1+CD11b+ so-called myeloid-derived sup-

pressor cells (Figure 1E). In contrast to this, accumulation of

Gr1+CD11b+ was not detected in the liver (Figure S1D). At day

3 after FITC challenge, MDSCs were also slightly increased in

draining lymph nodes due to cutaneous WT S. aureus infection,

corresponding to the decrease of proliferating Ki67+ T cells (Fig-

ure S1E). Further experiments investigating other suppressive

cell populations showed no alterations in the number of regula-

tory T (Treg) cells and IL-10-producing cells (Figure S1F); the

numbers of Langerhans cells (LCs, defined as CD11cloCD205hi)

and CD11c+MHC-II+ cells were also unchanged, and dermal

dendritic cells (dDCs, defined as CD11chiCD205lo) were slightly

increased (Figure S1E). These data indicate thatMDSCs function

independently of Treg cells and do not inhibit migration of DCs

into lymph nodes.

In order to further emphasize the functional and clinical rele-

vance of these findings, we investigated atopic dermatitis (AD)

patients. AD is a perfectly suited model disease for investiga-

tions on immune consequences of skin exposure to bacteria,

because AD is an inflammatory skin disease that is nearly always

covered with and triggered by Staphylococci. In humans,

MDSCs are typically described as CD11b+CD33+HLA-DR�

CD14� cells (Gabrilovich and Nagaraj, 2009). We observed a

significant increase of MDSCs in the peripheral blood mononu-

clear cells (PBMCs) of AD patients (Figure 1F). The upregulation

of human MDSCs was especially consistent in patients, in which

severe AD was complicated by eczema herpeticum, which is a

severe cutaneous viral infection resulting from immune suppres-

sion (Figure 1F, red squares) (Beck et al., 2009; Wollenberg

et al., 2003), suggesting suppressive properties of MDSCs

also in AD patients.

These data show that cutaneous S. aureus is sufficient to

induce MDSCs and to cause immune suppression.
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Figure 1. Cutaneous Staphylococcus aureus Induces Immune Suppression in Mice and Humans

(A–E) FITC-sensitized WT mice were treated following the protocol in Figure S1A (with living WT or lipoprotein mutant (Dlgt) S. aureus). Bacterial load as colony-

forming units (cfu) (mean ± SD, n = 5) (A), ear swelling (mean ± SD, n = 5) (B), histology (H&E staining) (C), proliferation of skin-draining lymph node (LN) cells

stimulated ex vivo with FITC (detected as counts per minute [cpm] of 3H-thymidine incorporation) (mean ± SD of triplicates) (D), and the percentage of cell

populations in the spleen (mean ± SD, n = 5) (E) were investigated. *p < 0.05.

(F) PBMCs from atopic dermatitis (AD) patients (n = 33) and healthy volunteers (n = 30) were analyzed forMDSCs, defined asCD11b+CD33+HLA-DR�CD14� cells.

The dots represent individual values, and the horizontal bar is the groupmean. Red squares representMDSCsof patientswith severe AD and eczema herpeticum.

*p < 0.05 (Mann-Whitney test). Data are representative of at least two independent experiments. See also Figure S1.
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Cutaneous Exposure to TLR2-6 but Not to TLR2-1
Ligands Ameliorates T Cell-Mediated Recall Responses
Next, we investigated the intriguing finding that lipoprotein-defi-

cientS. aureus failed to induce immune suppression in our model

(Figure 1B). As lipoproteins are sensed by different TLR2 hetero-

dimers (Henneke et al., 2008), we have taken advantage ofmicro-

bial-derived molecules, which are exclusively bound by one

specific TLR2 heterodimer. We selected three lipopeptides for

our studies: TLR2-6 ligands diacyl lipopeptides FSL-1 and

Pam2Cys and the triacylated lipopeptide Pam3Cys that is often

used as a reference compound for TLR2-1 activation. As in our

previous model, lipopeptides were applied to the skin during

re-exposure of FITC-sensitized mice to FITC (see protocol Fig-
764 Immunity 41, 762–775, November 20, 2014 ª2014 Elsevier Inc.
ure S1A). Similarly to the livingS. aureus, the cutaneous exposure

to TLR2-6 ligand FSL-1 almost completely abrogated consecu-

tive FITC-specific recall responses (Figures 2A and 2B), FITC-

specific ex vivo T cell proliferation (Figure 2C) and orchestrated

splenic reduction of CD4+ and CD8+ T cells together with

MDSC accumulation (Figure 2D). This result was confirmed

with another TLR2-6 ligand, Pam2Cys (Figures 2E–2H). In

contrast to Pam2Cys, the TLR2-TLR1 ligand Pam3Cys failed to

suppress FITC-specific dermatitis and T cell proliferation (Figures

2E–2G). Accordingly, no reduction of CD4+ and CD8+ T cells and

no induction of Gr1+CD11b+ cells could be detected (Figure 2H).

These data show that cutaneous exposure to bacterial TLR2-

TLR6 ligands is sufficient to cause immune suppression and that



Figure 2. Cutaneous Exposure to TLR2-6 but Not TLR2-1 Ligands Ameliorates T Cell-Mediated Recall Responses of the Skin

WT mice were treated following the protocol shown in Figure S1A. Mice were cutaneously exposed to FSL-1 in (A)–(D) and Pam2Cys or Pam3Cys in (E)–(H). Ear

swelling response (mean ± SD, n = 5) (A and E), histology (H&E staining) (B and F), proliferation of skin-draining LN cells stimulated ex vivo with FITC (mean ± SD

of triplicates) (C and G), and the percentage of cell populations in the spleen (mean ± SD, n = 5) (D and H) are shown. Data are representative of at least two

independent experiments. Experiments shown in (A) were performed with FSL-1 from two different providers. *p < 0.05.
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activation of TLR2-TLR6 heterodimers differs in regard to

functional consequences from activation of TLR2-TLR1

heterodimers.

Further, in order to control whether the presentation of the

antigen FITC is directly influenced by Pam2Cys exposure, we

analyzed the number of FITC positive DCs 14 hr after cutaneous

FITC application and Pam2Cys exposure. There were no differ-

ences in the numbers of FITC positive CD11c+MHC-II+ cells

and other dendritic cell populations (dDCs, LCs) in draining

lymph nodes (Figure S1G). Similarly, the analysis of other cell

populations at this early stage of the response revealed com-

parable numbers of T cells (CD4+, CD8+), activated T cells

(CD4+CD25+) and proliferating cells (Ki67+) (Figure S1H), IL-10

producing cells, and Treg cells (Figure S1I) in both mouse

groups. The treatment of mice with cyclophosphamide for Treg

cell depletion failed to reverse Pam2Cys-induced immune sup-

pression (Figures S1J–S1L), further indicating that Treg cells

are not involved in this type of immune suppression.

Skin-Infection-Induced Immune Suppression Is
Mediated by Gr1+CD11b+ Myeloid-Derived
Suppressor Cells
Next, as proof of concept that MDSCs are the responsible cells

for the observed immune suppression upon cutaneous

Pam2Cys exposure, we depleted Gr1+ cells. This depletion

caused an abrogation of immune suppression (Figure 3A, right).

Inversely, the adoptive transfer of MDSCs, isolated from mice

previously exposed to Pam2Cys, resulted in reduction of both

FITC-specific dermatitis and T cell proliferation (Figures 3B and

3C). To investigate whether human MDSCs in AD patients with

intense cutaneous exposure to lipoproteins were suppressive,

we depleted CD11b+ cells from PBMCs and analyzed prolifera-

tion of activated T cells. The CD11b+ population among PBMCs

consists of antigen-presenting cells and, in addition, contains

MDSCs in AD, but not healthy individuals. Consequently, in

seven of eight healthy volunteers, CD11b depletion resulted in

reduced T cell proliferation (Figure 3D, left). On the contrary,

this was only observed in one out of 7 AD patients (Figure 3D,

right). These results demonstrate thatMDSCs, which are present

among the CD11b+ population in AD patients, but not in healthy

individuals, are immunosuppressive. Indeed, T cell receptor

z-chain was significantly downregulated in AD patients (Fig-

ure 3E), which is known to be one of the major features of

MDSC-mediated T cell inhibition (Zea et al., 2005).

Taken together, these data revealed that skin-infection-

induced immune suppression is mediated by MDSCs.

Myeloid-Derived Suppressor Cells Are Recruited to the
Skin in Mice and Humans
Detecting MDSCs in human blood and mouse spleen following

cutaneous innate immune sensing indicates systemic MDSC

expansion. Therefore, we next monitored the kinetics of MDSC

induction in mice in (1) the bone marrow (BM), its primary source

(Figure 4A, left), and (2) one site of MDSC enrichment, the spleen

(Figure 4A, right) at different time points after cutaneous

Pam2Cys exposure. Starting on day 2, Gr1+CD11b+ cells in the

BM increased and peaked at day 7 with about 75%of cells being

Gr1+CD11b+. In the spleen, both CD4+ and CD8+ T cells were

strongly reduced. Gr1+CD11b+ cells increased starting at day 4
766 Immunity 41, 762–775, November 20, 2014 ª2014 Elsevier Inc.
with up to 7-fold induction on day 11 following cutaneous

Pam2Cys exposure (Figure 4A).

In FITC-CHS, T cells migrate to the skin and elicit dermatitis.

Therefore, we analyzed whether MDSCs were also recruited to

the skin. Indeed, 8 hr after FITC challenge Gr1+CD11b+ cells

were significantly increased in the skin of mice previously

exposed to Pam2Cys (Figure 4B). Similarly, we compared

healthy skin with lesional skin from AD patients colonized or in-

fected with S. aureus. Flow cytometry analysis confirmed a sig-

nificant increase of MDSCs in the skin of AD patients compared

to healthy skin (Figure 4C), indicating that presence of bacteria

and subsequent skin inflammation induce MDSC accumulation

in the skin also in humans.

Suppression of T Cell Activation byMDSCs Is Induced by
Cutaneous Innate Immune Sensing
Recruitment of MDSCs to the skin suggested MDSC-mediated

suppression of T cell activation in the skin in vivo. As first indica-

tion, we found that the depletion of CD11b+ cells of isolated

skin cells caused a stronger T cell proliferation following stimula-

tion with anti-CD3-CD28 in comparison to cells not depleted of

CD11b+ cells (Figure S2A), confirming a suppressive function of

skin MDSCs ex vivo. Moreover, flow cytometry analysis of ear

skin tissue following the FITC challenge revealed a significant

decrease of CD3+ T cells (Figure 5A, right) and IFN-g production

(Figure 5A, left) in previously Pam2Cys-exposed mice. Expres-

sion analysis of other cytokines revealed a significant decrease

of the Th2 cell cytokine IL-4 (a target for a systemic AD treatment

[Beck et al., 2014]), IL-10, and a tendency for IL-17 inhibition (Fig-

ure 5B). The investigation of cutaneous chemokines in the skin

showed a downregulation of most analyzed chemokines (CCL2,

CCL3, CCL4, CCL5, CCL11, CCL13, CCL17, CCL20, CCL27).

Only T cell attracting CCL22 (a CCR4 ligand) and CCL28 (CCR3

and CCR10 ligand) were significantly upregulated (Figure 5C).

The corresponding chemokine receptors were expressed on

theMDSCs in theskin,blood,andbonemarrow (Figure5D),which

further indicates that MDSCs are attracted to the site (and by

similar mechanism) of T cell migration (Biedermann et al., 2002).

To explore the mechanisms mediating MDSC-induced im-

mune suppression, we isolated MDSCs 10 days after Pam2Cys

exposure. Flow cytometry analysis revealed the presence of

both Ly6C+ and Ly6G+ MDSCs. Morphological evaluation of iso-

lated MDSCs confirmed that Ly6G+ MDSC were granulocytic,

whereas Ly6C+ MDSCs were monocytic (Figure S2B). In the

skin, Gr1+CD11b+ cells were further characterized as CD11c-,

CD15-, MHC-II-, B220-negative and positive for CD16-32 and

partly positive for F4-80 (Figure S2C), and splenic Ly6C+ cells

had a similar phenotype (Figure S2C). Next, we isolated Gr-

1dimLy6G�Ly6C+CD11b+ (Ly6C+) and Gr-1hiLy-6G+CD11b+

(Ly6G+) MDSCs from Pam2Cys-exposed mice and cocultured

them with naive splenocytes (responder cells) activated with

anti-CD3-CD28 antibodies (Abs) at different ratios. Following

coculture with Ly6C+ MDSCs at a ratio of 2:1, almost complete

suppression of T cell proliferation was observed, while Ly6G+

cells were not suppressive (Figure 5E, left). Investigating the sup-

pressive activity more thoroughly revealed that Ly6C+ MDSCs

inhibited Th0 CD4+ T cells, as well as Th1-, Th2-, and Th17-

polarized cells (Figure S2D). MDSCs’ immunosuppressive activ-

ity is reported to be a result of the activation of inducible NOS



Figure 3. Myeloid-Derived Suppressor Cells Are Responsible for Skin-Infection-Induced Immune Suppression

(A) WT mice were treated with FITC with or without cutaneous Pam2Cys exposure following the protocol in Figure S1A. The mice were additionally treated with

Gr1 depleting (right) or with an isotype control antibody (left) at day 2 and 4. Ear swelling response (mean ± SD, n = 5, left) was evaluated. Data are representative

of two independent experiments.

(B and C) WT mice were treated following the protocol shown in Figure S1A (without Pam2Cys exposure). One group of mice received Ly6C-Ly6G positive cells

from donors that were sensitized with FITC and exposed to Pam2Cys. The control group received spleen cells from naive mice. The ear swelling response

(mean ± SD, n = 5) (B) and the FITC-specific proliferation of LN cells (as cpm, mean ± SD of triplicates) (C) were evaluated.

(D) CD11b+ cells of PBMCs from healthy volunteers (n = 8, left) and AD patients (n = 7, right) were depleted, and remaining PBMCswere stimulated with anti-CD3-

CD28-mAbs, and analyzed for proliferation. *p < 0.05 (Mann-Whitney test).

(E) PBMCs from healthy donors (n = 8) and AD patients (n = 7) were analyzed for TCR z-chain expression (mean fluorescence intensity [MFI], CD3+ gate of living

cells) by intracellular flow cytometry. Each dot represents an individual value, and the horizontal bar is the group’s mean. *p < 0.05 (Mann-Whitney test). See also

Figure S2.
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(iNOS), leading to increased production of nitric oxide (NO) (Ga-

brilovich et al., 2001). Indeed, we found an increased iNOS

expression in the skin after FITC challenge in Pam2Cys-exposed

mice (Figure S2E), and Ly6C+ MDSCs from Pam2Cys-exposed

animals produced high concentration of NO (Figure 5E, middle).

NO production and T cell suppression by Ly6C+ MDSCs was
I

completely abrogated in a transwell experiment (Figure 5E mid-

dle, Figure S2F), indicating thatMDSC activation is a prerequisite

for MDSC NO production and MDSC-mediated suppression.

Flow cytometry analysis of the coculture confirmed higher

expression of iNOS by Ly6C+ cells (with a very low expression

of arginase and IL-10 by both MDSC subsets) (Figure S2G). In
mmunity 41, 762–775, November 20, 2014 ª2014 Elsevier Inc. 767



Figure 4. Skin Infection-Induced MDSCs Accumulate in the Skin in Mice and Humans

(A) WTmice were treated following the protocol in Figure S1A. The percentage of CD4+, CD8+, or Gr1+CD11b+ cells in Pam2Cys-exposed mice were analyzed by

flow cytometry at indicated time points after Pam2Cys exposure in BM (left) and spleen (right) (mean ± SD, n = 3). Asterisks show significant differences compared

with t = 0 determined by one-way ANOVA followed by Dunnett’s post test. *p < 0.05. Data are representative of two independent experiments.

(B) Cells from ear skin, isolated 4 hr or 8 hr after FITC challenge, were analyzed by flow cytometry (gate: living cells). A representative flow cytometry plot (left),

means ± SD (n = 5) (middle), and total numbers of Gr1+CD11b+ cells (mean ± SD, n = 5) (right) are shown. Data are representative of three independent experiments.

(C) Cells isolated from skin samples of AD patients (n = 9) and non-AD-controls (n = 9) were analyzed by flow cytometry (gate: living cells) for MDSCs, defined as

CD11b+CD33+HLA-DR�CD14� cells. A representative flow cytometry plot with the gating strategy first for CD11b+CD14� (top) and then CD33+HLA-DR�

(bottom) and the percentage of the CD11b+CD33+HLA-DR�CD14� cells (left) and cumulative analysis (right) are shown. Each of the dots represents an individual

value and the horizontal bar the group’s mean. *p < 0.05 (Mann-Whitney test). n.s., not significant.
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addition, the inhibition of iNOS by L-NMMA or L-NIL completely

abrogated MDSC-mediated suppression of T cell proliferation

(Figure 5E, right). Similarly, in PBMCs of AD patients we detected

a distinct iNOS+ population of CD11b+CD11c- cells. These cells

were completely absent in healthy individuals (Figure 5F). Impor-

tantly, we also detected iNOS+CD11b+CD11c� cells in AD skin

(Figure 5G, Figure S2H).

All together, the above results indicate that skin-infection-

induced MDSCs are present in the skin in mice and humans,

where they inhibit T cell proliferation bymeans of cell-to-cell con-

tact and iNOS.

Pam2Cys-Induced Immune Suppression Is Dependent
on Cutaneous TLR2
Next, we investigated underlying mechanisms how innate im-

mune sensing in the skin initiates MDSCs. Therefore we deter-

mined the role of TLR2. Tlr2�/� and WT mice were treated as

shown in Figure S1A with or without cutaneous Pam2Cys

exposure. In contrast to WT mice (Figure 6A, left), Tlr2�/� mice

failed to inhibit FITC-specific CHS (Figure 6A right) and T cell

proliferation (Figure 6B), and no reduction of CD4+ and CD8+

T cell numbers and accumulation of MDSCs (Figure 6C) was

observed following Pam2Cys exposure. Cutaneous innate

immune sensing through TLR2 might act through skin resident

cells or recruited circulating blood immune cells. Thus, mouse

chimeras were generated to distinguish between TLR2 sensing

of skin resident or recruited hematopoietic cells, as depicted

in Figure S3A.Chimerismwas confirmedbyPCRofBMcells (Fig-

ure S3B). The percentage of MDSCs was analyzed following the

protocol shown in Figure S1A. WT mice, reconstituted with WT

BM cells (WT +WT-BM) andWTmice, reconstituted with Tlr2�/�

BM cells (WT + Tlr2�/�-BM), upregulated MDSCs following

Pam2Cys exposure (Figure 6D, top). In contrast, Tlr2�/�mice re-

constituted with WT BM (Tlr2�/� + WT-BM) failed to accumulate

MDSCs, similar to control Tlr2�/�mice with Tlr2�/�BM (Tlr2�/� +

Tlr2�/�-BM) (Figure 6D, bottom). Thus, TLR2 expression on

skin-resident cells, which next to keratinocytes includes radia-

tion-resistant skin-resident Langerhans or mast cells, is neces-

sary and sufficient for MDSC accumulation.

Next, we investigated a functional role of TLR2 on MDSCs.

Chimeric mice were generated by reconstitution with 50%

CD45.1 WT and 50% CD45.2-Tlr2�/� BM (Figure S3C).

Following Pam2Cys exposure, approximately 20% of spleen

cells were MDSCs irrespective whether WT CD45.1 or Tlr2�/�

CD45.2 cells were analyzed (Figure S3D), demonstrating that

TLR2 is dispensable on MDSC precursor cells for MDSC induc-

tion and accumulation.

Cutaneous IL-6 Is Critically Required for MDSC
Induction
Our previous experiments showed that cutaneous Pam2Cys

sensing through TLR2 is sufficient to induce MDSCs and

consecutive suppression of cutaneous recall responses.

To identify underlying mechanisms, we first analyzed which

cells in the skin could be responsible for sensing Pam2Cys.

Immunofluorescence staining of TLRs after exposure of

mice to Pam2Cys or Pam3Cys showed an upregulation of

the corresponding TLR on keratinocytes (Figure 7A). Similar

analyses of human skin samples showed pronounced TLR2
I

expression in human skin albeit at lower amount in AD

compared to healthy skin (Figure S4A), as known from other

studies (Kuo et al., 2013). Next, we analyzed the functional

consequences of the TLR upregulation. We exposed mice

to different TLR ligands (Pam2Cys, Pam3Cys, CpG, and

LPS) and analyzed cutaneous mRNA expression of cutaneous

cytokines. All TLR ligands moderately upregulated Tnf and

the chemokine Cxcl2 was most dominantly induced by

Pam2Cys and Pam3Cys (Figure 7B). Upregulation of Il6

mRNA in the skin was most pronounced only after Pam2Cys

exposure. In comparison to skin following FITC-only or

FITC-plus-other TLR-ligands exposure, cutaneous Pam2Cys

exposure induced a 400-fold upregulation of Il6 mRNA (Fig-

ure 7B, right). On the protein level, we detected increased

IL-6 production by CD45 negative cells (which were also

MHC-II negative, Figure S4B) (Figure 7C). To confirm these

data, we stimulated primary human keratinocytes with TLR

ligands and detected upregulation of IL-6 production exclu-

sively following Pam2Cys treatment (Figure 7D).

To regulate MDSC induction in the bone marrow (Figure 4A),

cutaneous IL-6 needs to reach the bloodstream (Chalmin et al.,

2010). Indeed, IL-6 concentrations in mouse sera strongly

increased 1 day after cutaneous Pam2Cys exposure (Figure 7E).

These data suggest that IL-6 plays a crucial role in Pam2Cys-

induced MDSC induction; therefore, Il6�/� mice were investi-

gated. In contrast to WT mice, cutaneous Pam2Cys exposure

in Il6�/� mice failed to suppress FITC-CHS (Figure 7F), and

no induction of MDSCs could be detected (Figure 7G). Conse-

quently, the injection of IL-6 into the mice caused an increase

of MDSCs in the spleen (Figures S4C and S4D), suggesting

that IL-6 is responsible for MDSC induction and expansion.

To investigate whether IL-6 plays a role in MDSC migration to

the skin, we applied anti-IL-6 antibody shortly before challenge

and analyzed MDSC numbers in the skin. We found a sig-

nificant and unequivocal increase of Gr1+CD11b+ cells in

both conditions (Figure S4E), and the adoptive transfer of

MDSCs into Il6�/� mice showed a suppression of immune re-

sponses, comparable to what is observed in WT mice (Fig-

ure S4F). To investigate whether IL-6 plays a role for MDSC

development, we analyzed MDSCs generation in vitro. BM-

derived MDSCs (see Supplemental Experimental Procedures)

were treated with IL-6 during development, and their suppres-

sive function was investigated in a suppression assay with

responder cells. As shown in Figure 7H, the exposure of

MDSCs to IL-6 during generation enhanced their suppressive

function. These data indicate that IL-6 supports induction and

development of suppressive MDSCs, but not their migration

to the skin.

Taken together, these data suggest a scenario in which

Pam2Cys is sensed by TLR2 on skin resident cells, leading to

the expression and secretion of IL-6 in such high amounts that

MDSCs expand and accumulate, leading to the inhibition of

cutaneous recall responses.

DISCUSSION

In this study, we found that cutaneous exposure to bacteria and

bacterial substances known to act as potent MAMPs induced a

strong immune suppression mediated by MDSCs. These
mmunity 41, 762–775, November 20, 2014 ª2014 Elsevier Inc. 769



Figure 5. Skin Infection-Induced MDSCs Suppress T Cell Activation through Mechanisms Requiring NO Production

(A) WT mice were treated following the protocol in Figure S1A. 24 hr (A and B) or 8 hr (C and D) after FITC challenge ear tissue cells were analyzed. (A) Flow

cytometry for CD3+ cells (left) and IFN-g production (right). A cumulative result (means ± SD, n = 5) is shown.

(B andC) Quantitative RT-PCR analysis for cytokines (B) or chemokines (C) (normalized to housekeeping genesActb-Gapdh) andmeans ± SEM (n = 5) are shown.

Expression of the skin of FITC only-exposed mice was set as 1. *p < 0.05.

(D) Cells isolated from BM, blood, and skin of Pam2Cys-treated mice were analyzed for chemokine receptor expression by flow cytometry (gate: Gr1+CD11b+ of

living cells), shown as percentage of Gr1+CD11b+ (means ± SD, n = 5).

(E) Spleen cells were cocultured in vitro with Ly6C+ or Ly6G+ MDSCs as indicated, stimulated by anti-CD3-CD28-mAbs and analyzed for proliferation (left);

supernatants (ratio 2:1) were analyzed for NO production by Griess reaction (mean ± SD of experimental triplicates) (middle), and iNOS inhibitors L-NMMA and

(legend continued on next page)
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findings highlight that certain classes of bacterial molecules are

able to orchestrate unique pathways that, even after limited

cutaneous exposure, are sufficient to induce immune suppres-

sion. We found that cutaneous exposure to TLR2-TLR6 but not

to TLR2-TLR1 ligands induced MDSCs and consecutive cuta-

neous immune suppression. Bacteria differ in the acylation pat-

terns of their lipoproteins (Kurokawa et al., 2012b). Our results

suggest that they might differ in their potential to activate

different TLR2 heterodimers and to regulate immune responses

as well. Consequently, acylation properties might characterize

bacteria as pathogens or commensals. It was shown recently

that the degree of lipoprotein-acylation depends on environ-

mental factors and growth phase. Lipoprotein SitC was triacy-

lated when S. aureus was in the exponential growth phase at

neutral pH and diacylated in the postexponential phase at low

pH (Kurokawa et al., 2012a). At the situation on the skin, where

pH is low and chronic S. aureus colonization (which is almost

always found in AD) is present, a postexponential growth

phase of S. aureus can be assumed. Consequently, lipoproteins

from S. aureus on the skin are more diacylated. On the basis

of our data and also own recently published data (Kaesler

et al., 2014), we hypothesize that diacylation of lipoproteins

induces acute inflammation followed by immune suppression

as a consequence. Further, one can also assume that patho-

genic and nonpathogenic skin microflora might have different

acylation properties and therefore different compositions of

TLR2 ligands and thus overall differ in regard to their immune

consequences.

Previous data obtained using a systemic sepsis model with

Gram-negative bacteria derived from the gut described the

MyD88 and TLR4 pathway to be most relevant for MDSC

expansion (Delano et al., 2007). However, the exact cascade

of events was not investigated (Arora et al., 2010; Delano

et al., 2007). Our data investigating the common route of cuta-

neous infection with Gram-positive bacteria show that TLR2

activation on skin-resident cells mediates MDSC accumulation

and consecutive immune suppression. Induction of MDSCs by

activation of cutaneous TLR2-6 most dominantly involves IL-6.

Cutaneous innate immune cells (Blander and Medzhitov,

2004), keratinocytes, and even melanocytes (Stadnyk, 1994;

Takashima and Bergstresser, 1996) are all capable of producing

innate cytokines, such as IL-6. Indeed, in AD, where keratino-

cytes act as a critical first line of defense against microbes, early

IL-6 production has been described after direct contact of ker-

atinocytes with S. aureus (Sasaki et al., 2003). Moreover, IL-6

has been found to be increased in AD skin (Fedenko et al.,

2011) and especially in AD skin lesions (Travers et al., 2010),

in which the amount of IL-6 correlates with bacterial burden

(Travers et al., 2010). Genome-wide association studies recently

also identified an IL-6 receptor (IL-6R) variant as a risk factor for

AD (Esparza-Gordillo et al., 2013) and a small case series with

three patients has demonstrated therapeutic efficacy of an IL-
L-NIL were added to the coculture (right). Significant differences between expe

post-hoc test (*p < 0.05). Data are representative of at least two independent ex

(F) PBMCs from healthy donors and AD patients were analyzed by intracellular fl

result out of seven individuals is shown.

(G) Skin tissue of AD patients was analyzed by immunofluorescence. Arrows in

represents 25 mm. See also Figure S2.

I

6R blockade by tocilizumab, an IL-6R antibody (Navarini et al.,

2011). These observations confirm the importance of IL-6 pro-

duction by skin cells in response to microbes; however, the pre-

cise immune consequences of cutaneous IL-6 induction had not

been elucidated. Our data allow us to propose a model of how

the cutaneous innate immune network functions: diacylated lip-

opeptides activate TLR2-TLR6 on skin resident cells followed

by marked IL-6 production leading to the MDSC accumulation,

which is a prerequisite of subsequent immune suppression by

MDSCs. Our data also indicate that these TLR2-6-induced

MDSCs are prototypic MDSCs as characterized in other set-

tings. Moreover, our data have further identified that skin-infec-

tion-induced MDSCs suppressed immune responses in mice

and humans.

In conclusion, our study reveals a consequence of cutaneous

innate immune sensing for adaptive immune functions. The pres-

ence of certain lipoproteins on the skin might serve not only as

danger signal for the initiation of effective immune responses

but also might be able to counterregulate inflammation and

potently control and suppress immune responses.

EXPERIMENTAL PROCEDURES

Animals

Specific-pathogen-free, WT BALB/cmice were purchased fromCharles River.

Tlr2�/� mice (C57BL/6) were from C. Kirschning (Institute of Medical Microbi-

ology, University Duisburg-Essen) and were backcrossed to BALB/c for ten

generations. Il6�/�-BALB/c mice were from Dr. M. Kopf (Swiss Federal Insti-

tute of Technology). All mice were kept under specific pathogen-free condi-

tions in accordance with FELASA (Federation of European Laboratory Science

Association) in the University of Tübingen. The experiments were performed

with the approval of the local authorities (Regierungspräsidium Tübingen

HT1/10, HT3/11, HT7/11, HT5/13, HT8/13). Age-matched female mice were

used in all experiments.

Epicutaneous Mouse Skin Infection Model

The experimental model is based on epicutaneous application of the S. aureus

on shaved skin of mice (Wanke et al., 2013). Mice were sensitized with FITC

following the protocol as shown in Figure S1A. At days 7 and 10 3 3 108 WT

or lgt mutant S. aureus Newman in 30 ml PBS or PBS control were added to

filter paper discs placed onto the prepared skin and covered by Finn Cham-

bers on Scanpor (Smart Practice). Before application to the skin, barrier was

disrupted by tape stripping.

FITC Contact Hypersensitivity and Exposure to TLR2 Ligands

Mice were sensitized by administration of 80 ml of a 0.37% FITC solution

(dissolved in 1:1 acetone:dibutyl phthalate, Sigma Aldrich) on the shaved

abdomen on days �8 and �7. TLR2 ligands were applied intracutaneously

together with the second epicutaneous application of FITC on days �1 and

0 (Figure S1A) in the following concentrations per mouse: Pam2Cys, 2 mg;

Pam3Cys, 4 mg; FSL-1, 40 mg. Control mice obtained PBS instead of TLR2

ligands. At day 7, mice were challenged by epicutaneous application of

0.37%FITCsolutiononboth sidesof theears.Ear thicknesswasmeasuredwith

a micrometer (Oditest) as previously described (Volz et al., 2014), and data are

expressed as change in ear thickness compared to thickness before treatment.

In some experiments, mice were treated with 0.3 mM CpG 1668 (0.2 mM,
rimental conditions were assessed by one-way ANOVA followed by Tukey’s

periments.

ow cytometry (iNOS+ in CD11b+CD11c� Gate of living cells). A representative

dicate cells positive for CD11b and iNOS and negative for CD11c. Scale bar
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Figure 6. Pam2Cys-Induced Immune Suppression Is Dependent on TLR2

(A–C) WT and Tlr2�/� mice were treated following the protocol shown in Figure S1A and ear swelling (mean ± SD, n = 5) after FITC challenge (A), proliferation of

lymph node cells after FITC stimulation ex vivo (mean ± SD of triplicates) (B), and the percentage of spleen cell populations (mean ± SD, n = 5) (C) were analyzed.

(D)WT or Tlr2�/�mice were irradiated and reconstitutedwithWT or Tlr2�/�BMcells (see Figure S3A). Seven weeks later, the chimericmicewere treated following

the protocol shown in Figure S1A and their spleen cells were analyzed by flow cytometry. The percentage of Gr1+CD11b+ cells is shown (mean ± SD, n = 5). Data

are representative of three independent experiments. *p < 0.05, n.s., not significant. See also Figure S3.

Immunity

Skin Infection-Induced MDSCs Suppress T Cell Immunity
EurofinsGenomics), 1 mg/mouseLPS (fromSalmonellaminnesotaR595, Alexis

Biochemicals), cyclophoshamide (2 mg/mouse, Sigma-Aldrich), 20 mg/mouse

rmIL-6 (20 mg/mouse) or 50 mg/mouse anti-IL-6 (BioLegend).
772 Immunity 41, 762–775, November 20, 2014 ª2014 Elsevier Inc.
Human MDSCs

The study was approved by the local ethics committee of the University of Tü-

bingen, Germany, and written informed consent was obtained from all



Figure 7. IL-6 Is Required for Induction of Gr1+CD11b+ Cells and Pam2Cys-Induced Immune Suppression

(A–C) WT mice were treated following a protocol similar to that shown in Figure S1A. 24 hr after cutaneous exposure to TLR ligands or PBS (control), immu-

nofluorescence for TLR2 (red), TLR6 or TLR1 (blue), and nuclei (green) was done in (A), a representative picture (n = 3) is shown. Scale bar represents 30 mm (B).

The skin was evaluated for the expression of Tnf, Cxcl2, and Il6 mRNA by quantitative RT-PCR analysis (normalized to housekeeping gene Actb). Expression in

the skin of untreated mice (naive) was set as 1 (mean ± SD, n = 5). (C) Skin cells were isolated and analyzed for IL-6 production by intracellular flow cytometry, and

a cumulative analysis (mean ± SD, n = 5) is shown.

(D) Primary human keratinocytes were isolated and treated with TLR ligands for 24 hr, and the production of IL-6 was measured by ELISA (mean ± SD of trip-

licates).

(legend continued on next page)
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subjects (project number 344/2011BO2, 345/2011BO2, 396/2011BO2, 040/

2013BO2, 180/2013BO2). PBMCs were obtained from heparinized blood by

centrifugation (800 g for 30 min) using Ficoll-Histopaque (Biochrom). MDSCs

in the blood or skin of either healthy volunteers or non-AD-controls or atopic

dermatitis patients were analyzed by flow cytometry and characterized as

CD11b+CD33+HLA-DR�CD14� cells.

Bone-Marrow Chimeras

Recipient mice were lethally irradiated at 7.0 cGy and on the next day BM cells

(106 cells per recipient) were intravenously injected into recipient mice. To

confirm the chimerism of mice, we conducted genotyping of BM cells by

PCR for the WT and the mutated Tlr2 gene (Figure S3B).

Depletion of CD11b+ Cells

CD11b+ cells were depleted from PBMCs using the CD11b+ Beads (Miltenyi

Biotech) according to the manufacturer’s protocol.

Statistical Analysis

Unless otherwise stated, quantitative results are expressed as means ± SD

and differences were compared by unpaired, two-tailed Student’s t test (p <

0.05 was regarded as significant).
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(E) WT mice were treated following a protocol similar to that shown in Figure S1

triplicates).

(F andG)WT and Il6�/�micewere treated following the protocol shown in Figure S

of Gr1+CD11b+ cells (G) were analyzed.

(H) BM-derived MDSCs were treated with IL-6 (in indicated concentrations) durin

activated spleen cells (responder cells) in ratio 1:4. Proliferation of responder cells

experiments. *p < 0.05. See also Figure S4.
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