41 research outputs found

    Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order

    Get PDF
    Results for next-to-leading order QCD corrections to the pp(p\bar{p}) -> t \bar{t} -> W^+W^- b\bar{b} -> e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} +X processes with complete off-shell effects are presented for the first time. Double-, single- and non-resonant top contributions of the order {\cal{O}}(\alpha_{s}^3 \alpha^4) are consistently taken into account, which requires the introduction of a complex-mass scheme for unstable top quarks. Moreover, the intermediate W bosons are treated off-shell. Comparison to the narrow width approximation for top quarks, where non-factorizable corrections are not accounted for is performed. Besides the total cross section and its scale dependence, several differential distributions at the TeVatron run II and the LHC are given. In case of the TeVatron the forward-backward asymmetry of the top is recalculated afresh. With inclusive selection cuts, the forward-backward asymmetry amounts to A^{t}_{FB} = 0.051 +/- 0.0013. Furthermore, the corrections with respect to leading order are positive and of the order 2.3% for the TeVatron and 47% for the LHC. A study of the scale dependence of our NLO predictions indicates that the residual theoretical uncertainty due to higher order corrections is 8% for the TeVatron and 9% for the LHC.Comment: 35 pages, 39 figures, 3 tables. References and note added, version to appear in JHE

    Quantum Point Contacts and Coherent Electron Focusing

    Get PDF
    I. Introduction II. Electrons at the Fermi level III. Conductance quantization of a quantum point contact IV. Optical analogue of the conductance quantization V. Classical electron focusing VI. Electron focusing as a transmission problem VII. Coherent electron focusing (Experiment, Skipping orbits and magnetic edge states, Mode-interference and coherent electron focusing) VIII. Other mode-interference phenomenaComment: #3 of a series of 4 legacy reviews on QPC'

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore